Crude synaptic membranes of avian and mammalian brain tissue were photolabeled with the benzodiazepine-receptor ligand [3H]flunitrazepam and subsequently treated extensively with trypsin followed by incubation with endoglycosidase F. SDS-polyacrylamide gel electrophoresis and fluorography revealed that the final tryptic degradation product of 25 kDa in both pigeon and calf brain is deglycosylated in two steps. These results were confirmed by immunoblots of similarly pretreated membranes of pig brain using the alpha-subunit-specific monoclonal antibody bd-24. Benzodiazepine-receptor binding and its enhancement by GABA are largely retained after trypsinization. Based on the proposed transmembrane topology for the alpha-subunits of the GABA/benzodiazepine receptor, we suggest that the large N-terminal domain of benzodiazepine-binding proteins is protected against tryptic cleavage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-5793(89)80578-2 | DOI Listing |
Se Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFCommun Biol
January 2025
Cardio-Thoracic Translational Medicine (CTTM) Lab, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
Recent developments in mass spectrometry-based proteomics have established it as a robust tool for system-wide analyses essential for pathophysiological research. While post-mortem samples are a critical source for these studies, our understanding of how body decomposition influences the proteome remains limited. Here, we have revisited published data and conducted a clinically relevant time-course experiment in mice, revealing organ-specific proteome regulation after death, with only a fraction of these changes linked to protein autolysis.
View Article and Find Full Text PDFJ Microorg Control
January 2025
Division of Microbiology, National Institute of Health Sciences.
Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.
View Article and Find Full Text PDFFoods
January 2025
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, Moscow 119991, Russia.
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.
View Article and Find Full Text PDFJ Pharm Biomed Anal
March 2025
Global Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd., Tokodai 5-1-3, Tsukuba-shi, Ibaraki 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. Electronic address:
E6011 is a monoclonal antibody that is currently under development for the treatment of rheumatoid arthritis. While ligand binding assays (LBAs) are typically employed for the determination of therapeutic antibodies, ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) represents an alternative platform. E6011 in monkey serum was treated with ammonium sulfate to obtain pellets for subsequent processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!