Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene.

Eur Phys J E Soft Matter

Manufacturing Department, MGEP Mondragon Goi Eskola Politeknikoa, Loramendi 4 Apartado 23, 20500, Mondragon, Spain.

Published: November 2014

In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/i2014-14106-2DOI Listing

Publication Analysis

Top Keywords

molecular diffusion
16
coefficient binary
12
ternary mixtures
12
n-hexane n-dodecane
12
thermodiffusion coefficient
12
thermodiffusion molecular
8
diffusion soret
8
coefficient
8
soret coefficient
8
binary ternary
8

Similar Publications

Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.

View Article and Find Full Text PDF

CO2-driven Oxygen Vacancy Diffusion and Healing on TiO2(110) at Ambient Pressure.

Angew Chem Int Ed Engl

January 2025

KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.

Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.

View Article and Find Full Text PDF

Soil is one of the most important reservoirs of antibiotic resistance, global threat that needs to be addressed with the One Health approach. Despite urban parks playing a fundamental role in urban ecosystems, the diffusion, maintenance, and human impact of antibiotic-resistance genes in this substrate are still poorly addressed. To fill in this gap, we adopted a molecular and culturomics approach to study antibiotic resistance in urban parks, accounting for the environmental matrix and the level of urbanization.

View Article and Find Full Text PDF

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!