Major depression (MDE) has metabolic and neuroendocrine correlates, which point to a biological overlap between MDE and cardiovascular diseases. Whereas the hypothalamic-pituitary-adrenocortical axis has long been recognized for its involvement in depression, the focus was mostly on cortisol/corticosterone, whereas aldosterone appears to be the 'forgotten' stress hormone. Part of the reason for this is that the receptors for aldosterone, the mineralocorticoid receptors (MR), were thought to be occupied by glucocorticoids in most parts of the brain. However, recently it turned out that aldosterone acts selectively in relevant mood-regulating brain areas, without competing with cortisol/corticosterone. These areas include the nucleus of the solitary tract (NTS), the amygdala and the paraventricular nucleus of the hypothalamus. These regions are intimately involved in the close relationship between emotional and vegetative symptoms. Genetic analysis supports the role of aldosterone and of MR-related pathways in the pathophysiology of depression. Functional markers for these pathways in animal models as well as in humans are available and allow an indirect assessment of NTS function. They include heart rate variability, baroreceptor reflex sensitivity, blood pressure, salt taste sensitivity and slow-wave sleep. MR activation in the periphery is related to electrolyte regulation. MR overactivity is a risk factor for diabetes mellitus and a trigger of inflammatory processes. These markers can be used not only to assist the development of new treatment compounds, but also for a personalized approach to treat patients with depression and related disorders by individual dose titration with an active medication, which targets this system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000368265 | DOI Listing |
Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.
View Article and Find Full Text PDFJ Mood Anxiety Disord
December 2024
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
Objective: Natural variation in ovarian steroid hormones across the female lifespan contributes to an increased risk for depressive and posttraumatic stress disorder (PTSD) symptoms in women. However, minimal work has focused on understanding the impacts of reproductive aging on the brain and behavioral health of trauma-exposed women. This systematic review examines the bidirectional relationship between trauma-related psychopathology and reproductive aging.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFCureus
December 2024
Psychiatry, Drexel University College of Medicine, West Reading, USA.
Complex regional pain syndrome (CRPS) is a chronic pain disorder characterized by severe, disproportionate pain relative to an inciting event. The disorder's pathophysiology is complex, involving both central and peripheral nervous system alterations, alongside genetic, inflammatory, and psychological factors. Using data from TriNetX, this study investigated the impact of analgesic and adjuvant therapies on psychiatric outcomes in CRPS patients.
View Article and Find Full Text PDFAIMS Public Health
November 2024
Community health science, Aga Khan University Karachi, Pakistan.
Beta-thalassemia major (β-TM) is a genetic disorder, prevalent especially in the Mediterranean region, Southeast Asia, and the Indian subcontinent. With improvements in management over the years, β-TM has transitioned from a fatal childhood disease to a chronic condition. However, in Pakistan, there is still a lack of a comprehensive national policy and strategic plan, which has resulted in a growing number of β-TM patients, placing a substantial burden on individuals and the national healthcare system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!