McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation.

Biochemistry

Department of Molecular Biology, Cell Biology and Biochemistry, ‡Graduate Program in Molecular Pharmacology and Physiology, and §Department of Molecular Pharmacology, Physiology and Biotechnology & Chemistry, Brown University, Providence, Rhode Island 02903, United States.

Published: November 2014

MqsR-controlled colanic acid and biofilm regulator (McbR, also known as YncC) is the protein product of a highly induced gene in early Escherichia coli biofilm development and has been regarded as an attractive target for blocking biofilm formation. This protein acts as a repressor for genes involved in exopolysaccharide production and an activator for genes involved in stress response. To better understand the role of McbR in governing the switch from exponential growth to the biofilm state, we determined the crystal structure of McbR to 2.1 Å. The structure reveals McbR to be a member of the FadR C-terminal domain (FCD) family of the GntR superfamily of transcriptional regulators (this family was named after the first identified member, GntR, a transcriptional repressor of the gluconate operon of Bacillus subtilis). Previous to this study, only six of the predicted 2800 members of this family had been structurally characterized. Here, we identify the residues that constitute the McbR effector and DNA binding sites. In addition, comparison of McbR with other members of the FCD domain family shows that this family of proteins adopts highly distinct oligomerization interfaces, which has implications for DNA binding and regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245980PMC
http://dx.doi.org/10.1021/bi500871aDOI Listing

Publication Analysis

Top Keywords

dna binding
12
gntr transcriptional
8
biofilm formation
8
genes involved
8
mcbr
6
biofilm
5
family
5
mcbr/yncc implications
4
implications mechanism
4
mechanism ligand
4

Similar Publications

C9ORF72 poly-PR induces TDP-43 nuclear condensation via NEAT1 and is modulated by HSP70 activity.

Cell Rep

January 2025

Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:

The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.

View Article and Find Full Text PDF

Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20.

Mol Cell Biol

January 2025

Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA.

Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased.

View Article and Find Full Text PDF

Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.

View Article and Find Full Text PDF

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!