In this study, we demonstrated that the improvement of detection capability of cadmium sulfide (CdS) photoconductors in the ultraviolet (UV) regime is much larger than that in the visible regime, suggesting that the deep UV laser-treated CdS devices are very suitable for low-light detection in the UV regime. We determined that a nanocrystallized CdS photoconductor can behave as a picowatt-sensitive detector in the UV regime after ultra-shallow-region crystallization of the CdS film upon a single shot from a KrF laser. Photoluminescence and Raman spectra revealed that laser treatment increased the degree of crystallization of the CdS and led to the effective removal of defects in the region of a few tens nanometers beneath the surface of CdS, confirming the result by the transmission electron microscopy (TEM) images. Optical simulations suggested that UV light was almost completely absorbed in the shallow region beneath the surface of the CdS films, consistent with the observed region that underwent major crystal structure transformation. Accordingly, we noted a dramatic enhancement in responsivity of the CdS devices in the UV regime. Under a low bias voltage (1 mV), the treated CdS device provided a high responsivity of 74.7 A W(-1) and a detectivity of 1.0×10(14) Jones under illumination with a power density of 1.9 nW cm(-2). Even when the power of the UV irradiation on the device was only 3.5 pW, the device exhibited extremely high responsivity (7.3×10(5) A W(-1)) and detectivity (3.5×10(16) Jones) under a bias voltage of 1 V. Therefore, the strategy proposed in this study appears to have great potential for application in the development of CdS photoconductors for picowatt-level detection of UV light with low power consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am5052813 | DOI Listing |
Micromachines (Basel)
December 2024
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.
The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.
View Article and Find Full Text PDFBone
January 2025
Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:
Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.
View Article and Find Full Text PDFJ Orthod
January 2025
Department of Oral Biology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
Aim: To compare microleakage beneath ceramic and metal brackets prepared with either acid etching or laser conditioning.
Design: An in vitro study.
Setting: Department of Orthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
Eur J Ophthalmol
January 2025
Cornea and Refractive Surgery Unit, Instituto de Microcirugía Ocular (IMO), Barcelona, 08035, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!