Integration of quasi-two-dimensional (2D) films of metal-chalcogenides in optical microcavities permits new photonic applications of these materials. Here we present tunable microcavities with monolayer MoS2 or few monolayer GaSe films. We observe significant modification of spectral and temporal properties of photoluminescence (PL): PL is emitted in spectrally narrow and wavelength-tunable cavity modes with quality factors up to 7400; a 10-fold PL lifetime shortening is achieved, a consequence of Purcell enhancement of the spontaneous emission rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335560PMC
http://dx.doi.org/10.1021/nl503312xDOI Listing

Publication Analysis

Top Keywords

optical microcavities
8
two-dimensional metal-chalcogenide
4
metal-chalcogenide films
4
films tunable
4
tunable optical
4
microcavities integration
4
integration quasi-two-dimensional
4
quasi-two-dimensional films
4
films metal-chalcogenides
4
metal-chalcogenides optical
4

Similar Publications

Robust low threshold full-color upconversion lasing in rare-earth activated nanocrystal-in-glass microcavity.

Light Sci Appl

January 2025

State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.

Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing.

View Article and Find Full Text PDF

Multiple interacting photonic modes in strongly coupled organic microcavities.

Philos Trans A Math Phys Eng Sci

December 2024

Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK.

Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.

View Article and Find Full Text PDF

Chiral flat-band optical cavity with atomically thin mirrors.

Sci Adv

December 2024

Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.

A fundamental requirement for photonic technologies is the ability to control the confinement and propagation of light. Widely used platforms include two-dimensional (2D) optical microcavities in which electromagnetic waves are confined in either metallic or distributed Bragg reflectors. Recently, transition metal dichalcogenides hosting tightly bound excitons with high optical quality have emerged as promising atomically thin mirrors.

View Article and Find Full Text PDF

Multi-Resonant Full-Solar-Spectrum Perfect Metamaterial Absorber.

Nanomaterials (Basel)

December 2024

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Currently, perfect absorption properties of metamaterials have attracted widespread interest in the area of solar energy. Ultra-broadband absorption, incidence angle insensitivity, and polarization independence are key performance indicators in the design of the absorbers. In this work, we proposed a metamaterial absorber based on the absorption mechanism with multiple resonances, including propagation surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), electric dipole resonance (EDR), and magnetic dipole resonance (MDR).

View Article and Find Full Text PDF

Hybridisation of the cavity modes and the excitons to polariton states together with the coupling to the vibrational modes determine the linear optical properties of organic semiconductors in microcavities. In this article we compute the refractive index for such system using the Holstein-Tavis-Cummings model and determine then the linear optical properties using the transfer matrix method. We first extract the parameters for the exciton in our model from fitting to experimentally measured absorption of a 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl) fluorene (TDAF) molecular thin film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!