Class of periodic and quasiperiodic trajectories of particles settling under gravity in a viscous fluid.

Phys Rev E Stat Nonlin Soft Matter Phys

Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.

Published: October 2014

We investigate regular configurations of a small number of non-Brownian particles settling under gravity in a viscous fluid. The particles do not touch each other and can move relative to each other. The dynamics is analyzed in the point-particle approximation. A family of regular configurations is found with periodic oscillations of all the settling particles. The oscillations are shown to be robust under some out-of-phase rearrangements of the particles. In the presence of an additional particle above such a regular configuration, the particle periodic trajectories are horizontally repelled from the symmetry axis, and flattened vertically. The results are used to propose a mechanism of how a spherical cloud, made of a large number of particles distributed at random, evolves and destabilizes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.90.043007DOI Listing

Publication Analysis

Top Keywords

particles settling
8
settling gravity
8
gravity viscous
8
viscous fluid
8
regular configurations
8
particles
6
class periodic
4
periodic quasiperiodic
4
quasiperiodic trajectories
4
trajectories particles
4

Similar Publications

This study evaluated the integration of electrocoagulation into a lab-scale membrane bioreactor (EC-MBR) for treating wastewater from a detergent manufacturing plant. The EC-MBR system achieved a higher chemical oxygen demand (COD) and anionic surfactant removal efficiencies of 95.1% and 99.

View Article and Find Full Text PDF

Modeling of heteroaggregation driven buoyant microplastic settling: Interaction with multiple clay particles.

Sci Total Environ

December 2024

Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China. Electronic address:

The ecological risk of microplastics (MPs) has received widespread attention, but understanding ecological risk starts with understanding environmental migration. Heteroaggregation is an important process that affects the vertical migration of MPs, and the mathematical model is a common tool used to project the migration behavior of MPs. However, the mathematical model based on the aggregation of MPs with one clay particle is not applicable to simulate the migration behavior of buoyant microplastic (BMP).

View Article and Find Full Text PDF

Microplastics are mostly inert particles and, therefore, may exhibit low toxicity, but adverse health effects may result from chemical additives commonly added to plastics. Plastic additives serve to make the material workable and thermodynamically stable as well as acting as softeners, fillers and colorants. They may include hazardous chemicals, such as organic phosphates, phthalates, terephthalates, adipates, benzoates, citrates, sebacates, trimellitates, etc.

View Article and Find Full Text PDF

Marine microorganisms play a critical role in regulating atmospheric CO concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation.

View Article and Find Full Text PDF

Sedimentation tanks represent one of the most important components of any water and wastewater treatment plants. The lack of knowledge of hydraulics in sedimentation tank leads to unnecessary capital and operating costs as well as water pollution in the form of excessive sludge. Improper and inadequate design cause overloading of filters, and lead to frequent backwashing, which in turn waste a significant percentage of treated water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!