Long-term influence of fluid inertia on the diffusion of a Brownian particle.

Phys Rev E Stat Nonlin Soft Matter Phys

Dipartimento di Fisica Università degli studi di Napoli, Complesso Universitario Monte S. Angelo, Via Cintia 80126, Napoli, Italy.

Published: October 2014

We experimentally measure the effects of fluid inertia on the diffusion of a Brownian particle at very long time scales. In previous experiments, the use of standard optical tweezers introduced a cutoff in the free diffusion of the particle, which limited the measurement of these effects to times comparable with the relaxation time of the fluid inertia, i.e., a few milliseconds. Here, by using blinking optical tweezers, we detect these inertial effects on time scales several orders longer up to a few seconds. The measured mean square displacement of a freely diffusing Brownian particle in a liquid shows a deviation from the Einstein-Smoluchowsky theory that diverges with time. These results are consistent with a generalized theory that takes into account not only the particle inertia but also the inertia of the surrounding fluid.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.90.042309DOI Listing

Publication Analysis

Top Keywords

fluid inertia
12
brownian particle
12
inertia diffusion
8
diffusion brownian
8
time scales
8
optical tweezers
8
inertia
5
particle
5
long-term influence
4
fluid
4

Similar Publications

Modeling Electrowetting on Dielectric for Novel Droplet-Based Microactuation.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Brigham Young University, 350 Engineering Building, Provo, UT 84602, USA.

Recent advancements in Electrowetting on Dielectric (EWOD) systems, such as simplified fabrication, low-voltage actuation, and the development of more reliable materials, are expanding the potential applications of electrowetting actuators. One application of EWOD actuators is in RF devices to enable dynamic reconfiguration and allow real-time adjustments to frequency and bandwidth. In this paper, a method is introduced to actuate a panel using EWOD forces.

View Article and Find Full Text PDF

This study is the application of a recurrent neural networks with Bayesian regularization optimizer (RNNs-BRO) to analyze the effect of various physical parameters on fluid velocity, temperature, and mass concentration profiles in the Darcy-Forchheimer flow of propylene glycol mixed with carbon nanotubes model across a stretched cylinder. This model has significant applications in thermal systems such as in heat exchangers, chemical processing, and medical cooling devices. The data-set of the proposed model has been generated with variation of various parameters such as, curvature parameter, inertia coefficient, Hartmann number, porosity parameter, Eckert number, Prandtl number, radiation parameter, activation energy variable, Schmidt number and reaction rate parameter for different scenarios.

View Article and Find Full Text PDF

Microbubble entrainment on thin liquid films under drop impacts.

J Colloid Interface Sci

March 2025

Department of Mechanical Engineering, Baylor University, One Bear Place #97356, Waco, 76798, TX, United States. Electronic address:

This study reveals how drops impacting thin liquid films leave behind radial microbubble trains - here defined as large-area microbubbles (LAMs) - over a region comparable to the maximal surface coverage of the spreading phase. Using a thin, minimally compliant viscous oil film, the trapped bubbles are immobilized and quantified via high-speed imaging techniques across varying drop velocities and surface inclinations. The setup enables the characterization of microbubble entrainment (e.

View Article and Find Full Text PDF

Inertia-induced mixing and reaction maximization in laminar porous media flows.

Proc Natl Acad Sci U S A

December 2024

Department of Earth and Environmental Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455.

Solute transport and biogeochemical reactions in porous and fractured media flows are controlled by mixing, as are subsurface engineering operations such as contaminant remediation, geothermal energy production, and carbon sequestration. Porous media flows are generally regarded as slow, so the effects of fluid inertia on mixing and reaction are typically ignored. Here, we demonstrate through microfluidic experiments and numerical simulations of mixing-induced reaction that inertial recirculating flows readily emerge in laminar porous media flows and dramatically alter mixing and reaction dynamics.

View Article and Find Full Text PDF

Severe postpartum haemorrhage (PPH) is a dangerous condition, characterized by rapid progression and poor prognosis. It remains the leading preventable cause of maternal death worldwide. This study aimed to investigate the risk factors for severe PPH and establish a prediction model to identify severe PPH early, allowing for early intervention reduce maternal death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!