Nonequilibrium scaling explorations on a two-dimensional Z(5)-symmetric model.

Phys Rev E Stat Nonlin Soft Matter Phys

Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900 - CEP 14040-901, Ribeirão Preto, São Paulo, Brazil.

Published: October 2014

We have investigated the dynamic critical behavior of the two-dimensional Z(5)-symmetric spin model by using short-time Monte Carlo (MC) simulations. We have obtained estimates of some critical points in its rich phase diagram and included, among the usual critical lines the study of first-order (weak) transition by looking into the order-disorder phase transition. In addition, we also investigated the soft-disorder phase transition by considering empiric methods. A study of the behavior of β/νz along the self-dual critical line has been performed and special attention has been devoted to the critical bifurcation point, or Fateev-Zamolodchikov (FZ) point. First, by using a refinement method and taking into account simulations out of equilibrium, we were able to localize parameters of this point. In a second part of our study, we turned our attention to the behavior of the model at the early stage of its time evolution in order to find the dynamic critical exponent z as well as the static critical exponents β and ν of the FZ point on square lattices. The values of the static critical exponents and parameters are in good agreement with the exact results, and the dynamic critical exponent z≈2.28 very close to the four-state Potts model (z≈2.29).

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.90.042101DOI Listing

Publication Analysis

Top Keywords

dynamic critical
12
critical
9
two-dimensional z5-symmetric
8
phase transition
8
critical exponent
8
static critical
8
critical exponents
8
nonequilibrium scaling
4
scaling explorations
4
explorations two-dimensional
4

Similar Publications

In this paper, explore the effectiveness of a new Wide Area Fuzzy Power System Stabilizer (WAFPSS), optimized using the Exponential Distribution Optimization (EDO) algorithm, and applied to an IEEE three-area, six-machine power system model. This research primarily focuses on assessing the stabilizer's capability to dampen inter-area oscillations, a critical challenge in power grid operations. Through extensive simulations, the study demonstrates how the WAFPSS enhances stability and reliability under a variety of operational conditions characterized by different communication delay patterns.

View Article and Find Full Text PDF

Driving brain state transitions via Adaptive Local Energy Control Model.

Neuroimage

January 2025

College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China. Electronic address:

The brain, as a complex system, achieves state transitions through interactions among its regions and also performs various functions. An in-depth exploration of brain state transitions is crucial for revealing functional changes in both health and pathological states and realizing precise brain function intervention. Network control theory offers a novel framework for investigating the dynamic characteristics of brain state transitions.

View Article and Find Full Text PDF

A Highly Sensitive Creatine Kinase Detection in Human Serum using 11-mercaptoundecanoic acid Modified ITO-PET Electrodes.

Anal Biochem

January 2025

Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale-TURKEY. Electronic address:

The enzyme creatine kinase (CK) is a biomarker that plays an extremely significant role in the early detection of cardiovascular disorders. Serum levels of CK are regularly monitored in patients with heart attacks, one of the most critical cardiovascular illnesses. In this study, a highly sensitive electrochemical immunosensor system was designed for the importance of early diagnosis of CK.

View Article and Find Full Text PDF

Functional characterization and protein engineering of a O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis of Stephania tetrandra.

Int J Biol Macromol

January 2025

Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China. Electronic address:

Benzylisoquinoline alkaloids (BIAs) are the primary active components of Stephania tetrandra. However, the molecular mechanisms underlying BIA biosynthesis in S. tetrandra remain poorly understood.

View Article and Find Full Text PDF

Background: Early intervention in hepatic fibrosis (HF) is critical to reducing the risk of cirrhosis-related mortality and hepatocellular cancer. However, treating fibrosis has proven to be more challenging, with no approved anti-fibrotic therapies currently available for HF. Traditional Chinese medicines (TCMs) hold significant potential for the management of HF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!