Engineering attenuated virulence of a Theileria annulata-infected macrophage.

PLoS Negl Trop Dis

Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France; Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France.

Published: May 2016

Live attenuated vaccines are used to combat tropical theileriosis in North Africa, the Middle East, India, and China. The attenuation process is empirical and occurs only after many months, sometimes years, of in vitro culture of virulent clinical isolates. During this extensive culturing, attenuated lines lose their vaccine potential. To circumvent this we engineered the rapid ablation of the host cell transcription factor c-Jun, and within only 3 weeks the line engineered for loss of c-Jun activation displayed in vitro correlates of attenuation such as loss of adhesion, reduced MMP9 gelatinase activity, and diminished capacity to traverse Matrigel. Specific ablation of a single infected host cell virulence trait (c-Jun) induced a complete failure of Theileria annulata-transformed macrophages to disseminate, whereas virulent macrophages disseminated to the kidneys, spleen, and lungs of Rag2/γC mice. Thus, in this heterologous mouse model loss of c-Jun expression led to ablation of dissemination of T. annulata-infected and transformed macrophages. The generation of Theileria-infected macrophages genetically engineered for ablation of a specific host cell virulence trait now makes possible experimental vaccination of calves to address how loss of macrophage dissemination impacts the disease pathology of tropical theileriosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222746PMC
http://dx.doi.org/10.1371/journal.pntd.0003183DOI Listing

Publication Analysis

Top Keywords

host cell
12
tropical theileriosis
8
loss c-jun
8
cell virulence
8
virulence trait
8
engineering attenuated
4
attenuated virulence
4
virulence theileria
4
theileria annulata-infected
4
annulata-infected macrophage
4

Similar Publications

SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism.

View Article and Find Full Text PDF

Inducible regulating homologous recombination enables precise genome editing in Pichia pastoris without perturbing cellular fitness.

Trends Biotechnol

March 2025

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China. Electronic address:

The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P.

View Article and Find Full Text PDF

Cytokines in hematopoietic cell transplantation and related cellular therapies.

Best Pract Res Clin Haematol

December 2024

Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA. Electronic address:

Cytokines are pleiotropic molecules involved in hematopoiesis, immune responses, infections, and inflammation. They play critical roles in hematopoietic cell transplantation (HCT) and immune effector cell (IEC) therapies, mediating both therapeutic and adverse effects. Thus, cytokines contribute to the immunopathology of graft-versus-host disease (GVHD), cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS).

View Article and Find Full Text PDF

Astrovirus MLB1 (HAstV-MLB1) is non-enveloped RNA virus that cause acute gastroenteritis infection. Despite research progress about infection and pathogenesis of HAstV-MLB1, Currently, no vaccine has been developed to effectively combat this pathogen. The current study is based on immunoinformatics and reverse vaccinology approaches to design next-generation, multi-epitope-based vaccine models against HAstV-MLB1.

View Article and Find Full Text PDF

Gallbladder stones alone do not explain the risk of gallbladder cancer (GBC) as the sole etiological factor. Chronic microbial infection, particularly Salmonella, has been implicated in GB carcinogenesis, but its causative role and the underlying mechanisms are largely unknown. We studied gut and gallbladder tissue microbiome through targeted metagenomics to identify pathogenic bacteria in GBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!