Arginase 2 deficiency prevents oxidative stress and limits hyperoxia-induced retinal vascular degeneration.

PLoS One

Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America; Culver Vision Discovery Institute, Georgia Regents University, Augusta, Georgia, United States of America; Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America.

Published: July 2015

Background: Hyperoxia exposure of premature infants causes obliteration of the immature retinal microvessels, leading to a condition of proliferative vitreoretinal neovascularization termed retinopathy of prematurity (ROP). Previous work has demonstrated that the hyperoxia-induced vascular injury is mediated by dysfunction of endothelial nitric oxide synthase resulting in peroxynitrite formation. This study was undertaken to determine the involvement of the ureahydrolase enzyme arginase in this pathology.

Methods And Findings: Studies were performed using hyperoxia-treated bovine retinal endothelial cells (BRE) and mice with oxygen-induced retinopathy (OIR) as experimental models of ROP. Treatment with the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) prevented hyperoxia-induced apoptosis of BRE cells and reduced vaso-obliteration in the OIR model. Furthermore, deletion of the arginase 2 gene protected against hyperoxia-induced vaso-obliteration, enhanced physiological vascular repair, and reduced retinal neovascularization in the OIR model. Additional deletion of one copy of arginase 1 did not improve the vascular pathology. Analyses of peroxynitrite by quantitation of its biomarker nitrotyrosine, superoxide by dihydroethidium imaging and NO formation by diaminofluoroscein imaging showed that the protective actions of arginase 2 deletion were associated with blockade of superoxide and peroxynitrite formation and normalization of NOS activity.

Conclusions: Our data demonstrate the involvement of arginase activity and arginase 2 expression in hyperoxia-induced vascular injury. Arginase 2 deletion prevents hyperoxia-induced retinal vascular injury by preventing NOS uncoupling resulting in decreased reactive oxygen species formation and increased nitric oxide bioavailability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222858PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110604PLOS

Publication Analysis

Top Keywords

vascular injury
12
arginase
9
hyperoxia-induced retinal
8
retinal vascular
8
hyperoxia-induced vascular
8
nitric oxide
8
peroxynitrite formation
8
oir model
8
arginase deletion
8
hyperoxia-induced
6

Similar Publications

Neointimal hyperplasia, a pathological response to arterial interventions or injury, often leads to restenosis and recurrent narrowing or occlusion, particularly in the peripheral vasculature. Its prevalence and negative impact on the long-term success of vascular interventions have driven extensive research aimed at better understanding the condition and developing effective therapies. This review provides a comprehensive overview of emerging bioengineering strategies for treating neointimal hyperplasia in peripheral vessels.

View Article and Find Full Text PDF

Background And Purpose: Kidney disease (KD) is a leading cause of mortality worldwide, affecting 〉10% of the global population. Two of the most common causes of KD are diabetes and acute kidney injury (AKI), both of which induce mitochondrial dysfunction resulting in renal proximal tubular damage/necrosis. Thus, pharmacological induction of mitochondrial biogenesis (MB) may provide a therapeutic strategy to block the onset/progression of KD.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) refers to muscle tissue loss exceeding 20% within a functional area due to trauma or surgery, often leading to physical disabilities. VML treatment relies on the transplantation of autologous flaps harvested from a healthy-donor site while minimizing the probability of immune rejection. However, this approach often leads to donor-site morbidity and relies on a restricted supply of muscle tissue.

View Article and Find Full Text PDF

The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications.

Adv Sci (Weinh)

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Zhongshan Hospital Immunotherapy Translational Research Center, Fudan University, Shanghai, 200032, China.

BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation.

View Article and Find Full Text PDF

TRPC6 suppresses liver fibrosis by inhibiting hepatic stellate cell activation via CaMK4-CREB pathway.

Br J Pharmacol

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.

Background And Purpose: Genetic ablation or inhibition of the cation channel TRPC6 is protective against renal, cardiac and intestinal fibrosis. However, TRPC6 expression is decreased in patients with liver diseases. Here, we explored the role of TRPC6 in liver fibrosis and the underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!