In Brazil, the snail Biomphalaria glabrata is the most important vector of schistosomiasis due to its wide geographical distribution, high infection rate and efficient disease transmission. Among the methods of schistosomiasis control, the World Health Organization recommends the use of synthetic molluscicides, such as niclosamide. However, different substances of natural origin have been tested as alternatives for the control or eradication of mollusks. The literature describes the antitumor, antimicrobial and antiviral properties of usnic acid as well as other important activities of common interest between medicine and the environment. However, usnic acid has a low degree of water solubility, which can be a limiting factor for its use, especially in aquatic environments, since the organic solvents commonly used to solubilize this substance can have toxic effects on aquatic biota. Thus, the aim of the present study was to test the potassium salt of usnic acid (potassium usnate) with regard to molluscicidal activity and toxicity to brine shrimp (Artemia salina). To obtain potassium usnate, usnic acid was extracted with diethyl ether isolated and purified from the lichen Cladonia substellata. Biological assays were performed with embryos and adult snails of B. glabrata exposed for 24 h to the usnate solution solubilized in dechlorinated water at 2.5; 5 and 10 µg/ml for embryos, 0.5; 0.9; 1;5 and 10 µg/ml for mollusks and 0.5; 1; 5; 10 µg/ml for A. salina. The lowest lethal concentration for the embryos and adult snails was 10 and 1 µg/ml, respectively. No toxicity to A. salina was found. The results show that modified usnic acid has increased solubility (100%) without losing its biological activity and may be a viable alternative for the control of B. glabrata.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222767PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111102PLOS

Publication Analysis

Top Keywords

usnic acid
24
acid potassium
8
potassium salt
8
alternative control
8
biomphalaria glabrata
8
potassium usnate
8
embryos adult
8
adult snails
8
usnic
6
acid
5

Similar Publications

Allelopathic influence of usnic acid on Physcomitrium patens: A proteomics approach.

Plant Physiol Biochem

December 2024

Department of Plant Biology, Pavol Jozef Šafárik University in Košice, Mánesova 1889/23, 040 01, Košice, Slovakia. Electronic address:

Allelopathy, the chemical interaction of plants by their secondary metabolites with surrounding organisms, profoundly influences their functional features. Lichens, symbiotic associations of fungi and algae and/or cyanobacteria, produce diverse secondary metabolites, among other usnic acid, which express to have potent biological activities. Mosses, i.

View Article and Find Full Text PDF

Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids.

View Article and Find Full Text PDF

Design, synthesis, structural characterization, cytotoxicity and computational studies of Usnic acid derivative as potential anti-breast cancer agent against MCF7 and T47D cell lines.

Comput Biol Chem

December 2024

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia. Electronic address:

Article Synopsis
  • - Novel inhibitors like usnic acid derivative (UA1) are being developed to combat the increasing rates of breast cancer (BC) in women, promising stronger effects compared to existing treatments.
  • - The study utilized advanced techniques like FT-IR, NMR, and various simulations to analyze UA1’s structure and anticancer potential, finding it effective against breast cancer cell lines MCF7 and T47D with IC values indicating strong antitumor activity.
  • - Molecular docking and dynamics simulations showed UA1 binds effectively to the target protein, demonstrating stability and a favorable binding energy, suggesting its potential as a preventive agent against breast cancer.
View Article and Find Full Text PDF

Lichen and Its Microbiome as an Untapped Source of Anti-Biofilm Compounds.

Chem Biodivers

November 2024

Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722, Université de Limoges, Limoges, France.

Lichen substances have been first described in the 1870s, and around 10 000 compounds have been isolated and characterized. Most of them have been evaluated for their activity on planktonic microorganisms (bacteria and fungi). More recently, microorganisms colonizing the lichen thallus have been isolated and identified using DNA sequencing, giving access to a wide diversity of culturable microorganisms.

View Article and Find Full Text PDF
Article Synopsis
  • - Cationic antimicrobial peptides (AMPs) show potential as both antimicrobial and anticancer agents, and linking them to bioactive molecules may enhance their effectiveness in treating cancer.
  • - In this study, two derivatives of usnic acid were combined with the AMP L-K6 using a new bonding method while both components demonstrated selective activity against cancer cells, specifically targeting the DNA repair enzyme TDP1.
  • - The resulting conjugates showed a range of effects, from decreased activity of the original drugs to increased cytotoxicity against glioblastoma cells, suggesting enhanced therapeutic potential compared to the individual components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!