Aurones: a promising heterocyclic scaffold for the development of potent antileishmanial agents.

Int J Med Chem

Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece.

Published: November 2014

A series of (Z)-2-benzylidenebenzofuran-3-(2H)-ones (aurones) bearing a variety of substituents on rings A and B were synthesized and evaluated for their antiparasitic activity against the intracellular amastigote form of Leishmania infantum and their cytotoxicity against human THP1-differentiated macrophages. In general, aurones bearing no substituents on ring A (compounds 4a-4f) exhibit higher toxicity than aurones with 4,6-dimethoxy substitution (compounds 4g-4l). Among the latter, two aurones possessing a 2'-methoxy or a 2'-methyl group (compounds 4i and 4j) exhibit potent antileishmanial activity (IC50 = 1.3 ± 0.1 μM and IC50 = 1.6 ± 0.2 μM, resp.), comparable to the activity of the reference drug Amphotericin B, whereas they present significantly lower cytotoxicity than Amphotericin B as deduced by the higher selectivity index.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207450PMC
http://dx.doi.org/10.1155/2012/196921DOI Listing

Publication Analysis

Top Keywords

potent antileishmanial
8
aurones bearing
8
aurones
5
aurones promising
4
promising heterocyclic
4
heterocyclic scaffold
4
scaffold development
4
development potent
4
antileishmanial agents
4
agents series
4

Similar Publications

Antileishmanial and Antitrypanosomal Trends of Synthetic Tetralone Derivatives.

Drug Dev Res

February 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.

Leishmaniasis and trypanosomiasis are parasitic diseases that are closely linked to poverty, pose significant local burdens, and are common in tropical and subtropical regions. Various synthetic tetralone derivatives were studied as potential scaffolds for antileishmanial and antitrypanosomal activities. The compounds were studied for their effectiveness against multiple kinetoplastid protozoan pathogens: Leishmania major, Leishmania mexicana, and bloodstream trypomastigotes of Trypanosoma brucei brucei.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) is an opportunistic infection in HIV patients with higher relapse and mortality rate. The number of HIV-VL patients is comparatively higher in areas where both infections are endemic. However, the conventional chemotherapeutic agents have limited success due to drug toxicity, efficacy variance and overall cost of treatment.

View Article and Find Full Text PDF

Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy.

Molecules

January 2025

Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru.

Leishmaniasis, a neglected tropical disease caused by species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against , , and , comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species.

View Article and Find Full Text PDF

Sulfonamide drugs were the original class of antibiotics, demonstrating the antibacterial potential of dithiocarbazate and thiosemicarbazone Schiff base derivatives of syringaldehyde and 4-hydroxy-3,5-dimethylbenzaldehyde. We synthesized unique Schiff bases via the condensation of the aldehydes with hydrazine derivatives, which allows for the easy synthesis of several related compounds. These Schiff base derivatives were tested for antileishmanial properties against the parasitic protozoan .

View Article and Find Full Text PDF

Deep Multitask Learning-Driven Discovery of New Compounds Targeting .

ACS Omega

December 2024

Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia 74605-170, Brazil.

Article Synopsis
  • Visceral leishmaniasis is a serious disease primarily found in low- and middle-income countries, with limited treatment options due to toxicity and drug resistance.
  • Researchers developed a multitask learning (MTL) pipeline to predict the effectiveness of compounds against several species, screening about 1.3 million compounds and finding 20 potential candidates with significant antileishmanial activity.
  • Three of these compounds showed strong efficacy and moderate safety, suggesting they could lead to new therapies, while the use of explainable models aids in understanding how these compounds work, potentially improving drug discovery for neglected tropical diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!