Revisiting the vanishing refuge model of diversification.

Front Genet

Museum of Vertebrate Zoology, Integrative Biology Department, University of California Berkeley Berkeley, CA, USA ; Research School of Biology, The Australian National University Acton, ACT, Australia.

Published: November 2014

Much of the debate around speciation and historical biogeography has focused on the role of stabilizing selection on the physiological (abiotic) niche, emphasizing how isolation and vicariance, when associated with niche conservatism, may drive tropical speciation. Yet, recent re-emphasis on the ecological dimensions of speciation points to a more prominent role of divergent selection in driving genetic, phenotypic, and niche divergence. The vanishing refuge model (VRM), first described by Vanzolini and Williams (1981), describes a process of diversification through climate-driven habitat fragmentation and exposure to new environments, integrating both vicariance and divergent selection. This model suggests that dynamic climates and peripheral isolates can lead to genetic and functional (i.e., ecological and phenotypic) diversity, resulting in sister taxa that occupy contrasting habitats with abutting distributions. Here, we provide predictions for populations undergoing divergence according to the VRM that encompass habitat dynamics, phylogeography, and phenotypic differentiation across populations. Such integrative analyses can, in principle, differentiate the operation of the VRM from other speciation models. We applied these principles to a lizard species, Coleodactylus meridionalis, which was used to illustrate the model in the original paper. We incorporate data on inferred historic habitat dynamics, phylogeography and thermal physiology to test for divergence between coastal and inland populations in the Atlantic Forest of Brazil. Environmental and genetic analyses are concordant with divergence through the VRM, yet physiological data are not. We emphasize the importance of multidisciplinary approaches to test this and alternative speciation models while seeking to explain the extraordinarily high genetic and phenotypic diversity of tropical biomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205810PMC
http://dx.doi.org/10.3389/fgene.2014.00353DOI Listing

Publication Analysis

Top Keywords

vanishing refuge
8
refuge model
8
divergent selection
8
genetic phenotypic
8
phenotypic diversity
8
divergence vrm
8
habitat dynamics
8
dynamics phylogeography
8
speciation models
8
speciation
5

Similar Publications

Background: Glaucoma is the leading cause of irreversible vision loss. Accurate Optic Disc (OD) and Optic Cup (OC) segmentation is beneficial for glaucoma diagnosis. In recent years, deep learning has achieved remarkable performance in OD and OC segmentation.

View Article and Find Full Text PDF

Coral reefs are highly threatened ecosystems, yet there are numerous challenges in conducting inventories of their vanishing biodiversity, partly because many taxa remain difficult to detect and describe. Genetic species delimitation methods provide a standardized means for taxonomic classification including of cryptic, rare, or elusive groups, but results can vary by analytical method and genetic marker. In this study, a combination of morphological and genetic identification methods was used to estimate species richness and identify taxonomic units in true crabs (Infraorder Brachyura; n = 200) from coral reefs of Palmyra Atoll, Central Pacific.

View Article and Find Full Text PDF

High-throughput sequencing data have greatly improved our ability to understand the processes that contribute to current biodiversity patterns. The "vanishing refuge" diversification model is speculated for the coastal forests of eastern Africa, whereby some taxa have persisted and diversified between forest refugia, while others have switched to becoming generalists also present in non-forest habitats. Complex arrangements of geographical barriers (hydrology and topography) and ecological gradients between forest and non-forest habitats may have further influenced the region's biodiversity, but elucidation of general diversification processes has been limited by lack of suitable data.

View Article and Find Full Text PDF

Updating the Phylogenetic Dating of New Caledonian Biodiversity with a Meta-analysis of the Available Evidence.

Sci Rep

June 2017

Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 CNRS MNHN UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, CP 50, 57 rue Cuvier, 75005, Paris, France.

For a long time, New Caledonia was considered a continental island, a fragment of Gondwana harbouring old clades that originated by vicariance and so were thought to be locally ancient. Recent molecular phylogenetic studies dating diversification and geological data indicating important events of submergence during the Paleocene and Eocene (until 37 Ma) brought evidence to dismiss this old hypothesis. In spite of this, some authors still insist on the idea of a local permanence of a Gondwanan biota, justifying this assumption through a complex scenario of survival by hopping to and from nearby and now-vanished islands.

View Article and Find Full Text PDF

Molecular data reveal spatial and temporal patterns of diversification and a cryptic new species of lowland Stenocercus Duméril & Bibron, 1837 (Squamata: Tropiduridae).

Mol Phylogenet Evol

January 2016

Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil.

Phylogenetic studies have uncovered biogeographic patterns and the associated diversification processes of Neotropical wet forest taxa, yet the extensive open and drier biomes have received much less attention. In the Stenocercus lizard radiation, restricted sampling and phylogenetic information have limited inferences about the timing, spatial context, and environmental drivers of diversification in the open and dry lowland settings of eastern and southern South America. Based on new DNA sequence data of previously unsampled species, we provide an updated historical biogeographic hypothesis of Stenocercus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!