Cadmium-induced cell death is associated with endoplasmic reticulum (ER) stress. We previously found that inhibition of FBXO6 expression, which is a ubiquitin ligase involved in ER-associated protein degradation (ERAD), induces high sensitivity to cadmium in HEK293 cells. However, the precise role of FBXO6 in ER stress remains unexplored. In this study, we investigated the role of FBXO6 in cadmium-induced ER stress in HEK293 cells. Our results showed that the cadmium-induced increase in expression of the ER stress marker proteins, BiP and CHOP, was further enhanced by inhibiting FBXO6 expression. Cadmium-induced c-Jun phosphorylation was also markedly increased by inhibition of FBXO6 expression. However, this c-Jun phosphorylation was almost entirely abolished by inhibition of c-Jun N-terminal kinase 1 (JNK1) expression. The level of high cadmium sensitivity induced by inhibition of FBXO6 expression was markedly lower in the JNK1-ablated cells than in the control cells. In addition, cadmium elevated the cellular level of ERAD substrate proteins, and this elevation was further enhanced by inhibiting FBXO6 expression. These results suggest that FBXO6 might inhibit cadmium-induced ER stress by functioning as a ubiquitin ligase in the ERAD system, thereby attenuating the cell death induced by subsequent JNK1 activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2131/jts.39.861 | DOI Listing |
J Control Release
December 2024
Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou City 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopedic Trauma and Aging Diseases of Zhejiang Province, Zhejiang 310016, China. Electronic address:
iScience
March 2024
Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 41810-710, Brazil.
Tuberculosis-diabetes mellitus (TB-DM) is linked to a distinct inflammatory profile, which can be assessed using multi-omics analyses. Here, a machine learning algorithm was applied to multi-platform data, including cytokines and gene expression in peripheral blood and eicosanoids in urine, in a Brazilian multi-center TB cohort. There were four clinical groups: TB-DM(n = 24), TB only(n = 28), DM(HbA1c ≥ 6.
View Article and Find Full Text PDFCell Signal
November 2023
Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China; Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China. Electronic address:
Objective: The objective of this study is to determine how Musashi-2 (MSI2) affects vascular smooth muscle cell (VSMC) phenotypic switch and contributes to atherosclerosis (AS).
Methods: Primary mouse VSMCs were transfected with MSI2 specific siRNA and treated with platelet-derived growth factor-BB (PDGF-BB). The proliferation, cell-cycle, and migration of VSMCs were determined by CCK-8, flow cytometry, wound healing, and transwell assays.
BMC Musculoskelet Disord
June 2023
Department of Orthopaedic Surgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shaoxing, 312400, Zhejiang, China.
Background: We aimed to establish an osteosarcoma prognosis prediction model based on a signature of endoplasmic reticulum stress-related genes.
Methods: Differentially expressed genes (DEGs) between osteosarcoma with and without metastasis from The Cancer Genome Atlas (TCGA) database were mapped to ERS genes retrieved from Gene Set Enrichment Analysis to select endoplasmic reticulum stress-related DEGs. Subsequently, we constructed a risk score model based on survival-related endoplasmic reticulum stress DEGs and a nomogram of independent survival prognostic factors.
Front Oncol
May 2023
Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Background: Breast cancer is the most frequently diagnosed cancer and a leading cause of cancer-related death in women. Endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of several malignancies. However, the prognostic value of ERS-related genes in breast cancer has not been thoroughly investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!