Pupil fluctuations track fast switching of cortical states during quiet wakefulness.

Neuron

Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA. Electronic address:

Published: October 2014

Neural responses are modulated by brain state, which varies with arousal, attention, and behavior. In mice, running and whisking desynchronize the cortex and enhance sensory responses, but the quiescent periods between bouts of exploratory behaviors have not been well studied. We found that these periods of "quiet wakefulness" were characterized by state fluctuations on a timescale of 1-2 s. Small fluctuations in pupil diameter tracked these state transitions in multiple cortical areas. During dilation, the intracellular membrane potential was desynchronized, sensory responses were enhanced, and population activity was less correlated. In contrast, constriction was characterized by increased low-frequency oscillations and higher ensemble correlations. Specific subtypes of cortical interneurons were differentially activated during dilation and constriction, consistent with their participation in the observed state changes. Pupillometry has been used to index attention and mental effort in humans, but the intracellular dynamics and differences in population activity underlying this phenomenon were previously unknown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323337PMC
http://dx.doi.org/10.1016/j.neuron.2014.09.033DOI Listing

Publication Analysis

Top Keywords

sensory responses
8
population activity
8
pupil fluctuations
4
fluctuations track
4
track fast
4
fast switching
4
switching cortical
4
cortical states
4
states quiet
4
quiet wakefulness
4

Similar Publications

To examine the dose-response relationship between specific types of exercise for improving walking velocity in Parkinson's disease (PD). This systematic review and network meta-analysis included searches of PubMed, Medline, Embase, PsycINFO, Cochrane Library, and Web of Science were searched from inception until February 18th, 2024. Data analysis was performed using R software with the MBNMA and RJAGS packages.

View Article and Find Full Text PDF

Sphingoid Base Diversity.

Atherosclerosis

December 2024

Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland. Electronic address:

Sphingolipids (SL) are crucial components of cellular membranes and play pivotal roles in various biological processes, including cell growth, differentiation, apoptosis, and stress responses. All SL contain a sphingoid base (SPB) backbone which is the shared and class-defining element. SPBs are heterogeneous in length and structure.

View Article and Find Full Text PDF

Neocortical somatostatin neuron diversity in cognition and learning.

Trends Neurosci

January 2025

Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function.

View Article and Find Full Text PDF

Dissociating the Roles of Alpha Oscillation Sub-Bands in Visual Working Memory.

Neuroimage

January 2025

Institute of Brain and Psychological Sciences, Sichuan Normal University, 610066 Sichuan, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, 116029 Liaoning, China. Electronic address:

Alpha oscillations play a critical role in visual working memory (VWM), but the specific contributions of lower and upper alpha sub-bands remain unclear. To address this, we employed a whole-field change detection paradigm to investigate how alpha power modulation and decoding accuracy differ between these sub-bands in response to varying set sizes and spatial extents of memory arrays. Our results revealed that lower alpha (8-9 Hz) exhibits widespread event-related desynchronization (ERD) during the early maintenance phase, which increases with set size and reflects attentional allocation to individual memory items.

View Article and Find Full Text PDF

The influence of guided tours on the welfare of white-handed gibbons and capuchin monkeys at Maia Zoo.

Behav Processes

January 2025

University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; University of Coimbra, Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.

Zoo animals are regularly exposed to a plethora of sensorial stimuli beyond their control, which can adversely impact their behaviour and welfare, including unfamiliar faces, excessive noise and intrusive visitor interaction. Zoos have implemented various measures, such as enrichments and regulation of visitor behaviour, to mitigate these effects. However, guided tours have not been used to simultaneously control visitor behaviour and maintain animal welfare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!