Pancreatic cancer (PC) is one of the most common cancers worldwide and a leading cause of cancer-related death. Discovering novel targets is a key for its therapy. Carboxypeptidase E (CPE), a subtype of the pro-protein convertases, has been shown to be upregulated in many types of cancer, yet its function in PC remains elusive. The expressions of CPE in PC cell lines and cancer patients were investigated by Western blot and qRT-PCR. In PC cell line BX-pc-3, CPE was downregulated and its effect on cancer cell proliferation, migration, cisplatin chemosensitivity, and in vivo tumor growth was analyzed by Western blot, proliferation assay, invasion assay, and in vivo transplantation, respectively. The expression of nuclear factor-kappaB (NF-κB), a possible downstream target of CPE was examined by Western blot upon CPE regulation in PC cells, and the effects of inhibiting NF-κB on PC cell invasion and proliferation were examined. CPE was significantly upregulated in PC cell lines and tumor tissues. Proliferation and invasion assays indicated that downregulation of CPE inhibited cancer cell growth and migration and increased chemosensitivity to cisplatin. Inoculation of small interfering RNA (siRNA) transfected BX-pc-3 cells into null mice demonstrated that downregulation of CPE prevented tumor growth in vivo. NF-κB was directly regulated by CPE in pancreatic cancer, and siRNA-mediated inhibition of NF-κB exerted similar anti-tumor effect as downregulating CPE. Taken together, our results demonstrate that CPE plays an important role in pancreatic cancer. Inhibition of CPE may serve as a potential target for PC therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-014-2564-yDOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
16
downregulation cpe
12
cpe
12
western blot
12
cell proliferation
8
cancer
8
cell lines
8
cancer cell
8
tumor growth
8
cell
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!