Propagation of acoustic signals above an impedance ground in a refractive, turbulent atmosphere with spatial-temporal fluctuations in temperature and wind velocity is considered. Starting from a parabolic equation, and using the Markov approximation and a locally frozen turbulence hypothesis, closed-form equations for the spatial-temporal statistical moments of arbitrary order of the sound-pressure field are derived. The general theory provides a basis for analysis of many statistical characteristics of broadband and narrowband acoustic signals for different geometries of propagation: line-of-sight propagation, multipath propagation in a refractive atmosphere above an impedance ground, and sound scattering into a refractive shadow zone. As an example of application of this theory, the spatial-temporal coherence of narrowband acoustic signals for line-of-sight propagation is calculated and analyzed. The coherence time of acoustic signals is studied numerically for meteorological conditions ranging from cloudy to sunny conditions, and with light, moderate, and strong wind. The results obtained are compared with available experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4897311 | DOI Listing |
Anal Chem
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.
View Article and Find Full Text PDFSocial vocalizations contain cues that reflect the motivational state of a vocalizing animal. Once perceived, these cues may in turn affect the internal state and behavioral responses of listening animals. Using the CBA/CAJ mouse model of acoustic communication, this study examined acoustic cues that signal intensity in male-female interactions, then compared behavioral responses to intense mating vocal sequences with those from another intense behavioral context, restraint.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
January 2025
Department of Cardiology, Respiratory Medicine and Intensive Care, University Hospital Augsburg, Augsburg, Germany.
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.
Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.
Int J Nanomedicine
January 2025
Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.
Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.
View Article and Find Full Text PDFTrends Hear
January 2025
Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China.
Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!