Rhythmic degradation explains and unifies circadian transcriptome and proteome data.

Cell Rep

Institute for Theoretical Biology, Charité-Universitätsmedizin, 10115 Berlin, Germany. Electronic address:

Published: October 2014

The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2014.09.021DOI Listing

Publication Analysis

Top Keywords

transcriptome proteome
12
circadian transcriptome
8
proteome studies
8
circadian
6
rhythmic degradation
4
degradation explains
4
explains unifies
4
unifies circadian
4
proteome data
4
data rich
4

Similar Publications

Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.

Nat Methods

January 2025

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

Background: Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed.

View Article and Find Full Text PDF

Bioinformatic approaches for accurate assessment of A-to-I editing in complete transcriptomes.

Methods Enzymol

January 2025

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. Electronic address:

A-to-I RNA editing is an RNA modification that alters the RNA sequence relative to the its genomic blueprint. It is catalyzed by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes, and contributes to the complexity and diversification of the proteome. Advancement in the study of A-to-I RNA editing has been facilitated by computational approaches for accurate mapping and quantification of A-to-I RNA editing based on sequencing data.

View Article and Find Full Text PDF

Zinc is central to the function of many proteins, yet the mechanisms of zinc homeostasis and their interplay with other cellular systems remain underexplored. In this study, we employ data-dependent acquisition (DDA) and data-independent acquisition (DIA) mass spectrometry to investigate proteome changes in under conditions of different zinc availability. Using these methods, we detected 2143 unique proteins, 1578 of which were identified by both DDA and DIA.

View Article and Find Full Text PDF

Augmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!