Virtual screening of potential inhibitor against FtsZ protein from Staphylococcus aureus.

Interdiscip Sci

Bioinformatics centre (BIF), PG& Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Tiruchirapalli, 620002, Tamil Nadu, India.

Published: November 2014

AI Article Synopsis

  • Staphylococcus aureus is a gram-positive bacterium that causes a range of infections, making it a significant health concern.
  • FtsZ, a key protein involved in bacterial cell division, was identified as a promising target for developing new antibiotics, leading to a structure-based screening of chemical compounds.
  • Four lead compounds (C ID 16284, 25916, 15894, 13403) were selected based on their docking scores and molecular dynamics simulations, providing a basis for further experimental studies on FtsZ-related drug development.

Article Abstract

The gram-positive bacterium Staphylococcus aureus, responsible for a wide variety of diseases in human involve all organ systems ranging from localized skin infections to life-threatening systemic infections. FtsZ, the key protein of bacterial cell division was selected as a potent anti bacterial target. In order to identify the new compounds structure based screening process was carried out. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FtsZ from a large chemical database. The docking score and docking energy values were compared and their atomic interaction was also evaluated. Furthermore molecular dynamics simulation were also been performed to check the stability and the amino acids interacted towards the FtsZ. Finally we selected C ID 16284, 25916, 15894, 13403 as better lead compounds. From these results, we conclude that our insilico results will provide a framework for the detailed in vitro and in vivo studies about the FtsZ protein activity in drug development process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-012-0072-6DOI Listing

Publication Analysis

Top Keywords

ftsz protein
8
staphylococcus aureus
8
ftsz
5
virtual screening
4
screening potential
4
potential inhibitor
4
inhibitor ftsz
4
protein staphylococcus
4
aureus gram-positive
4
gram-positive bacterium
4

Similar Publications

The Min system is a key spatial regulator of cell division in rod-shaped bacteria and the first FtsZ negative modulator to be recognized. Nevertheless, despite extensive genetic and in vitro studies, the molecular mechanism used by MinC to inhibit Z-ring formation remains incompletely understood. The crystallization of FtsZ in complex with other negative regulators such as SulA and MciZ has provided important structural information to corroborate in vitro experiments and establish the mechanism of Z-ring antagonism by these modulators.

View Article and Find Full Text PDF

Hydrodynamic characterization of the FtsZ protein from Escherichia coli demonstrates the presence of linear and lateral trimers.

Anal Biochem

January 2025

Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.

FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a neo-Hookean elasticity theory for hybrid mechano-active hydrogels by incorporating motor proteins into polymer structures, leading to materials that actively soften due to adjustable chain overlaps.
  • The focus is on polyacrylamide hydrogels enhanced with the bacterial protein FtsZ, using a multiscale model that combines microscopic rubber mesh theory, mesoscopic scaling concepts, and phase transition formalism to explain the observed active softening.
  • This research provides valuable insights for designing and controlling complex active hydrogels, potentially advancing applications in technology and biomedicine.
View Article and Find Full Text PDF

In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.

View Article and Find Full Text PDF

Z-ring formation by FtsZ, the master assembler of the divisome, is a key step in bacterial cell division. Membrane anchoring of the Z-ring requires the assistance of dedicated Z-ring binding proteins, such as SepF and FtsA. SepF participates in bundling and membrane anchoring of FtsZ in gram-positive bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!