Background: Severe to profound sensorineural hearing loss (SNHL) requires cochlear implantation (CI) for auditory rehabilitation. Etiologic diagnoses can contribute to candidacy selection and decision-making regarding the timing of successful CI. However, few studies have been performed to address the etiologic spectrum of severe SNHL in the population where there is no consanguineous marriage and the majority of SNHL cases are sporadic in small sized families. The authors sought to comprehensively understand the etiologies of Korean cochlear implantees by incorporating the targeted resequencing of 204 candidate deafness genes (TRS-204) and a phenotype-driven candidate gene approach.
Methods: Ninety-three that consented to molecular genetic testing and underwent at least one molecular genetic test were included. Patients with a characteristic Phenotypic marker were subject to Sanger sequencing to detect variants in corresponding candidate genes. The rest of patients without any prominent phenotype were tested on GJB2. Next, TRS-204 was applied in GJB2-negative cases without any phenotypic marker. In addition, the sibling recurrence-risk of SNHL among families with non-diagnostic genotypes after TRS-204 was performed to gain insight of etiologies in non-diagnostic cases.
Results: Overall, we could find causative variants in 51 (54.8%) of the 93 cochlear implantees. Thirty (32.3%) probands could be diagnosed by direct Sanger sequencing of candidate genes selected by their phenotypes. GJB2 sequencing added 10 subjects to the group with a diagnostic genotype. TRS-204 could detect a causative variant from additional 11 cases (11.8%). We could not detect any pathogenic deletion or duplication on 204 target genes. The sibling recurrence-risk of SNHL among 42 genetically undiagnosed families with 0.03 (1/38) was significantly lower than among genetically diagnosed recessive families with 0.19 (7/37).
Conclusion: Despite that the majority of severe or more degree of SNHL occurs sporadically in Koreans, at least 54.8% of such cases that were willing to join the genetic study in the Korean population are monogenic Mendelian disorders with convincing causative variants. This study also indicates that a substantial portion of unsolved cases after applying our current protocol are predicted to have non-genetic or complex etiology rather than a Mendelian genetic disorder involving new genes beyond the 204 target genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243193 | PMC |
http://dx.doi.org/10.1186/s13023-014-0167-8 | DOI Listing |
Pancreatology
January 2025
Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary. Electronic address:
Background/objectives: Loss-of-function chymotrypsin C (CTRC) variants increase the risk for chronic pancreatitis (CP) by reducing protective pancreatic CTRC activity. Variants in the 5' upstream region that includes the promoter might affect CTRC expression but have not been investigated to date. The aim of the present study was to address this knowledge gap.
View Article and Find Full Text PDFArab J Gastroenterol
January 2025
Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia. Electronic address:
Personalized medicine is an emerging field that provides novel approaches to disease's early diagnosis, prevention, treatment, and prognosis based on the patient's criteria in gene expression, environmental factors, lifestyle, and diet. To date, hepatocellular carcinoma (HCC) is a significant global health burden, with an increasing incidence and significant death rates, despite advancements in surveillance, diagnosis, and therapeutic approaches. The majority of HCC lesions develop in patients with liver cirrhosis, carrying the risks of mortality associated with both the tumor burden and the cirrhosis.
View Article and Find Full Text PDFZhonghua Xue Ye Xue Za Zhi
December 2024
Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China.
This case report presents a patient with pediatric acute myeloid leukemia (AML) with RUNX1∷MTG16, admitted to the Blood Disease Hospital of the Chinese Academy of Medical Sciences in October 2023. He was 13 years old, with a chief complaint of fatigue for 20 days. Bone marrow smear revealed 17.
View Article and Find Full Text PDFJ Struct Biol
January 2025
Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil; Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:
Cry proteins, commonly found in gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and as insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank.
View Article and Find Full Text PDFExp Cell Res
January 2025
Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany. Electronic address:
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!