Background: Human variation in susceptibility to hypoxia-induced pulmonary hypertension is well recognized. High-altitude residents who do not develop pulmonary hypertension may host protective gene mutations.
Methods And Results: Exome sequencing was conducted on 24 unrelated Kyrgyz highlanders living 2400 to 3800 m above sea level, 12 (10 men; mean age, 54 years) with an elevated mean pulmonary artery pressure (mean±SD, 38.7±2.7 mm Hg) and 12 (11 men; mean age, 52 years) with a normal mean pulmonary artery pressure (19.2±0.6 mm Hg) to identify candidate genes that may influence the pulmonary vascular response to hypoxia. A total of 140 789 exomic variants were identified and 26 116 (18.5%) were classified as novel or rare. Thirty-three novel or rare potential pathogenic variants (frameshift, essential splice-site, and nonsynonymous) were found exclusively in either ≥3 subjects with high-altitude pulmonary hypertension or ≥3 highlanders with a normal mean pulmonary artery pressure. A novel missense mutation in GUCY1A3 in 3 subjects with a normal mean pulmonary artery pressure encodes an α1-A680T soluble guanylate cyclase (sGC) variant. Expression of the α1-A680T sGC variant in reporter cells resulted in higher cyclic guanosine monophosphate production compared with the wild-type enzyme and the purified α1-A680T sGC exhibited enhanced sensitivity to nitric oxide in vitro.
Conclusions: The α1-A680T sGC variant may contribute to protection against high-altitude pulmonary hypertension and supports sGC as a pharmacological target for reducing pulmonary artery pressure in humans at altitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCGENETICS.114.000763 | DOI Listing |
Schizophrenia (Heidelb)
December 2024
Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Schizophrenia (SZ), schizoaffective disorder (SZA), bipolar disorder (BD), and psychotic depression (PD) are associated with premature death due to preventable general medical comorbidities (GMCs). The interaction between psychosis, risk factors, and GMCs is complex and should be elucidated. More research particularly among those with SZA or PD is warranted.
View Article and Find Full Text PDFBMJ Open
December 2024
Clinical Research Department, Ignacio Chávez National Heart Institute, Mexico City, Mexico
Objectives: To investigate clinical characteristics, symptom profile, testing practices, treatment patterns and quality of life (QoL) among patients with pulmonary arterial hypertension (PAH) in Latin America.
Design: Data from the Adelphi Real World PAH Disease Specific Programme, a cross-sectional survey with retrospective data collection.
Setting: University/teaching hospital, regional centres, private practices and government institutions in Argentina, Brazil, Colombia and Mexico.
J Pediatr Surg
December 2024
Section of Pediatric Surgery, C.S. Mott Children's Hospital, Michigan Medicine, Ann Arbor, MI, USA. Electronic address:
Introduction: Timing of repair for infants with congenital diaphragmatic hernia (CDH) requiring extracorporeal life support (ECLS) remains controversial. Approaches include early repair on ECLS, late repair on ECLS, or repair after ECLS decannulation; all have potential risks and benefits. To mitigate risk and maximize benefit, our group developed an individualized hybrid model in 2016 in which approach is based on prenatal risk stratification.
View Article and Find Full Text PDFEchocardiography
January 2025
Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
Objectives: Numerous studies have demonstrated impaired right ventricular (RV) synchronicity in pulmonary arterial hypertension (PAH). However, few studies have focused on connective tissue disease (CTD)-associated PAH. This study evaluates RV dyssynchrony and its prognostic value in CTD-associated PAH.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
The vascular endothelium is vital for cardio-pulmonary homeostasis and, thus, plays a crucial role in preventing life-threatening lung diseases. The transcription factor GATA2 is essential for hematopoiesis and maintaining vascular integrity. Heterozygous mutations in GATA2 can lead to a primary immunodeficiency syndrome with pulmonary manifestations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!