Design and synthesis of new acid cleavable linkers for DNA sequencing by synthesis.

Nucleosides Nucleotides Nucleic Acids

a Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine and Bio-ID Center , Shanghai Jiao Tong University, Shanghai , China.

Published: July 2015

A new kind of acid sensitive tetrahydrofuranyl (THF) linker was synthesized and then reacted with 5-(6)-carboxytetramethylrhodaminesuccinimidyl ester (5(6)-TAMRA, SE), followed by di(N-succinimidyl) carbonate (DSC) and modified 2'-deoxyuridine triphosphate (dUTP); the final product, as a reversible terminator for DNA sequencing by synthesis (DNA SBS), was given obtained and confirmed by 1H-NMR, 31P-NMR, and HRMS with purity of up to 99%. The synthesized dye-labeled terminator incorporated into DNA strand successfully, and the fluorophore was cleaved completely under acidic conditions. The preliminary results encourage us to explore more acid-sensitive linkers for DNA SBS to increase the cleavage efficiency under weakly acidic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770.2014.945647DOI Listing

Publication Analysis

Top Keywords

linkers dna
8
dna sequencing
8
sequencing synthesis
8
dna sbs
8
acidic conditions
8
dna
5
design synthesis
4
synthesis acid
4
acid cleavable
4
cleavable linkers
4

Similar Publications

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.

View Article and Find Full Text PDF

In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized.

View Article and Find Full Text PDF

Sulfonated indocyanines 3 and 5 (sCy3, sCy5) are widely used to label biomolecules. Their high molar absorption coefficients and lack of spectral overlap with biopolymers make them ideal as linker components for rapid assessment of bioconjugate stoichiometry. We recently found that the determination of the sCy3:sCy5 molar ratio in a conjugate from its optical absorption spectrum is not straightforward, as the sCy3:sCy5 absorbance ratio at the maxima tends to be larger than expected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!