With fluorescence and interference reflection microscopy (IRM), we compared the regional distribution of calspectin, its interacting proteins (nonerythroid protein 4.1 and calpactin), alpha-actinin, and vinculin in NRK cells and their avian sarcoma virus (ASV)- or temperature-sensitive (ts) Rous sarcoma virus (RSV)-transformed cells. The localization of these cytoskeletal proteins was determined with the specific antibodies. In NRK cells, alpha-actinin and vinculin were concentrated at adhesion plaques. By contrast, calspectin was distributed throughout the cytoplasm, but not concentrated at adhesion plaques. In ASV- and ts RSV-transformed cells, all three cytoskeletal proteins were concentrated at dot structures representing cellular feet. Nonerythroid protein 4.1 and calpactin were diffusely distributed throughout the cytoplasm of NRK cells and their transformed counterparts. In the case of calpactin, a part of this protein was excluded near regions of the terminal ends of stress fibers. These two proteins did not show the restricted location at the dot structures of transformed cells. From these findings, it is apparent that the accumulation of calspectin into dot structures is a specific event for cell transformation induced by the src protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-4827(89)90199-7DOI Listing

Publication Analysis

Top Keywords

alpha-actinin vinculin
12
nonerythroid protein
12
protein calpactin
12
nrk cells
12
dot structures
12
regional distribution
8
distribution calspectin
8
avian sarcoma
8
rous sarcoma
8
transformed cells
8

Similar Publications

Vinculin haploinsufficiency impairs integrin-mediated costamere remodeling on stiffer microenvironments.

J Mol Cell Cardiol

January 2025

Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:

Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on determining the post-mortem interval (PMI) using proteomic techniques, highlighting the importance of analyzing proteins in forensic biological samples for legal investigations.
  • - A review of 32 studies revealed that skeletal muscle was the most frequently examined tissue; specific proteins showed varying rates of degradation after death, which are related to PMI.
  • - Certain biological markers demonstrated a consistent correlation with PMI, providing insights that could improve the accuracy of time-of-death estimations in forensic contexts.
View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effect of normal mouse serum on radiation pneumonitis in mice and explore the possible mechanism.

Methods: Mouse models of radiation pneumonitis induced by thoracic radiation exposure were given intravenous injections of 100 μL normal mouse serum or normal saline immediately after the exposure followed by injections once every other day for a total of 8 injections. On the 15th day after irradiation, histopathological changes of the lungs of the mice were examined using HE staining, the levels of TNF-α, TGF-β, IL-1α and IL-6 in the lung tissue and serum were detected using ELISA, and the percentages of lymphocytes in the lung tissue were analyzed with flow cytometry.

View Article and Find Full Text PDF

Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in , encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!