Traditional slit-based spectrometers have an inherent trade-off between spectral resolution and throughput that can limit their performance when measuring diffuse sources such as light returned from highly scattering biological tissue. Recently, multielement fiber bundles have been used to effectively measure diffuse sources, e.g., in the field of spatially offset Raman spectroscopy, by remapping the source (or some region of the source) into a slit shape for delivery to the spectrometer. Another approach is to change the nature of the instrument by using a coded entrance aperture, which can increase throughput without sacrificing spectral resolution.In this study, two spectrometers, one with a slit-based entrance aperture and the other with a coded aperture, were used to measure Raman spectra of an analyte as a function of the optical properties of an overlying scattering medium. Power-law fits reveal that the analyte signal is approximately proportional to the number of transport mean free paths of the scattering medium raised to a power of -0.47 (coded aperture instrument) or -1.09 (slit-based instrument). These results demonstrate that the attenuation in signal intensity is more pronounced for the slit-based instrument and highlight the scattering regimes where coded aperture instruments can provide an advantage over traditional slit-based spectrometers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221093PMC
http://dx.doi.org/10.1117/1.JBO.19.11.117001DOI Listing

Publication Analysis

Top Keywords

coded aperture
16
raman spectroscopy
8
biological tissue
8
traditional slit-based
8
slit-based spectrometers
8
diffuse sources
8
entrance aperture
8
scattering medium
8
slit-based instrument
8
aperture
6

Similar Publications

As the demand for high-speed, low-latency communication continues to grow, free-space optical (FSO) communication has gained prominence as a promising solution for supporting the next generation of wireless networks, especially in the context of the 5G and beyond era. It offers high-speed, low-latency data transmission over long distances without the need for a physical infrastructure. However, the deployment of FSO systems faces significant challenges, such as atmospheric turbulence, weather-induced signal degradation, and alignment issues, all of which can impair performance.

View Article and Find Full Text PDF

Gamma-ray coded-aperture imaging technology has important applications in the fields of nuclear security, isolated source detection, and the decommissioning of nuclear facilities. However, artifacts can reduce the quality of reconstructed images and affect the identification of the intensity and location of radioactive sources. In this paper, a gamma-ray coded-aperture imaging method based on primitive and reversed coded functions (PRCF) was proposed to reduce imaging artifacts.

View Article and Find Full Text PDF

Achieving independent multitasked wavefront control by using an ultrathin plate is a challenge to increase information capacity in integration optics and radar applications. Transmission-reflection-integrated metasurface provides an efficient recipe primarily for multifunctional meta-device, however it is challenging to synergize both linear polarization (LP) and circular polarization (CP) using a single meta-plate. Here, a multichannel full-space coding metasurface composed of interleaved shared-aperture meta-atom is proposed to achieve large information capacity by capsulating judiciously engineered high efficiency triple sub-elements (modes) in four-layer scheme.

View Article and Find Full Text PDF

An ingenious and compact snapshot multispectral polarization imaging method is proposed based on a new, to the best of our knowledge, three-channel-switchable spectral polarization coded aperture. We utilize the coded aperture to simultaneously select three-channel light components and encode them with specific spectrum-polarization coefficients. It enables easy retrieval of each channel's light component from the mixed information via polarization measurements and linear decoding operations.

View Article and Find Full Text PDF

The point spread function (PSF) of an optical system could characterize the resolving ability of the whole optical system for point light sources. Therefore, the imaging performance of the system could be significantly improved by regulating and optimizing the PSF. In this paper, we innovatively propose a single-exposure hologram resolution enhanced cross-correlation (RECC) method for Interferenceless coded aperture holography(I-COACH) system, circumventing the necessity to obtain the point spread hologram (PSH) of an ideal point object.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!