Dendritic cells (DCs) are major immune components, and depending on how these cells are modulated, the protective host immune response changes drastically. Trypanosoma cruzi is a parasite with high genetic variability and modulates DCs by interfering with their capacity for antigen recognition, migration, and maturation. Despite recent efforts, the association between DCs and T. cruzi I (TcI) and TcII populations is unknown. Herein, it was demonstrated that AQ1.7 and MUTUM TcI strains present low rates of invasion of bone marrow-derived DCs, whereas the 1849 and 2369 TcII strains present higher rates. Whereas the four strains similarly induced the expression of PD-L1, the production and expression of IL-10 and TLR-2, respectively, in DCs were differentially increased. The production of TNF-α, IL-12, IL-6, and CCL2 and the expression of CD40, CD80, MHC-II, CCR5, and CCR7 changed depending on the strain. The 2369 strain yielded the most remarkable results because greater invasion correlated with an increase in the levels of anti-inflammatory molecules IL-10 and PD-L1 but not with a change in the levels of TNF-α, MHC-II, or CD40 molecules. These results suggest that T. cruzi strains belonging to different populations have evolved specific evasion strategies that subvert DCs and consequently the host response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211313 | PMC |
http://dx.doi.org/10.1155/2014/962047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!