Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%. IQ-TREE is freely available at http://www.cibiv.at/software/iqtree.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271533 | PMC |
http://dx.doi.org/10.1093/molbev/msu300 | DOI Listing |
Invertebr Syst
January 2025
Instituto de Biología, UNAM, Departamento de Zoología, Colección Nacional de Insectos, Apartado Postal 70-153, 04510, Ciudad de México, Mexico.
The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
The Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark.
Background: The increasing amount of genomic data calls for tools that can create genome-scale phylogenies quickly and efficiently. Existing tools rely on large reference databases or require lengthy de novo calculations to identify orthologues, meaning that they have long run times and are limited in their taxonomic scope. To address this, we created getphylo, a python tool for the rapid generation of phylogenetic trees de novo from annotated sequences.
View Article and Find Full Text PDFMycoKeys
January 2025
College of Forestry, Southwest Forestry University, Kunming 650224, China Southwest Forestry University Kunming China.
In the ecosystem, wood-inhabiting fungi play an indispensable role in wood degradation and the cycle of substances. They are regarded as the "key player" in the process of wood decomposition because of their ability to produce various enzymes that break down woody lignin, cellulose, and hemicellulose. In this study, four new wood-inhabiting fungal species, , , , and , were collected from southwestern China and were proposed based on the morphological and molecular evidence.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
Trochoidea is the richest and most diverse group within Vetigastropoda, serving as one of the main focuses on studies of marine ecology and systematics. Both morphological and molecular studies have sought to resolve the phylogenetic framework of Trochoidea; however, the phylogenetic relationships among some lineages remain controversial. In order to explore the phylogenetic relationships within Trochoidea, we sequenced the mitochondrial genomes of 9 trochoids and analyzed them with data from 38 previously published mitochondrial genomes and 27 transcriptomic data representing 11 families within this group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!