Purpose: A new image-based methodology is developed for estimating the apparent space-filling properties of an object of interest in PET imaging without need for a robust segmentation step and used to recover accurate estimates of total lesion activity (TLA).
Methods: A multifractal approach and the fractal dimension are proposed to recover the apparent space-filling index of a lesion (tumor volume, TV) embedded in nonzero background. A practical implementation is proposed, and the index is subsequently used with mean standardized uptake value (SUV mean) to correct TLA estimates obtained from approximate lesion contours. The methodology is illustrated on fractal and synthetic objects contaminated by partial volume effects (PVEs), validated on realistic (18)F-fluorodeoxyglucose PET simulations and tested for its robustness using a clinical (18)F-fluorothymidine PET test-retest dataset.
Results: TLA estimates were stable for a range of resolutions typical in PET oncology (4-6 mm). By contrast, the space-filling index and intensity estimates were resolution dependent. TLA was generally recovered within 15% of ground truth on postfiltered PET images affected by PVEs. Volumes were recovered within 15% variability in the repeatability study. Results indicated that TLA is a more robust index than other traditional metrics such as SUV mean or TV measurements across imaging protocols.
Conclusions: The fractal procedure reported here is proposed as a simple and effective computational alternative to existing methodologies which require the incorporation of image preprocessing steps (i.e., partial volume correction and automatic segmentation) prior to quantification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.4898122 | DOI Listing |
Top Cogn Sci
November 2024
Division of Biomechanics and Research Development, Department of Biomechanics, Center for Research in Human Movement Variability, University of Nebraska at Omaha.
The interaction-dominant approach to perception and action, originally formulated in the mid-1990s, has matured and gained remarkable momentum as an entailment of the dynamical hypotheses proposed at that time. This framework seeks to explain the fluid and intricate interplay of causality spanning the entire organism by integrating high-dimensional details with low-dimensional constraints across various scales of behavior. Both Chemero (2024) and Wallot et al.
View Article and Find Full Text PDFSci Rep
October 2024
School of Petroleum Engineering, Yangtze University, Wuhan, 430100, China.
Conventional logging interpretation methods qualitatively identify shale reservoirs using shale attribute parameters and interpretation templates. However, improving the identification accuracy of complex shale reservoirs is challenging due to the numerous evaluation parameters and the complexity of model calculations. To quantitatively characterize high-quality shale reservoirs effectively, this study utilizes two wells in the Fuling shale gas field as examples and establishes a comprehensive evaluation method for identifying high-quality shale gas reservoirs utilizing multi-fractal spectral analysis of well logs.
View Article and Find Full Text PDFMed Phys
October 2024
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Background: Respiratory motion irregularities in lung cancer patients are common and can be severe during multi-fractional (∼20 mins/fraction) radiotherapy. However, the current clinical standard of motion management is to use a single-breath respiratory-correlated four-dimension computed tomography (RC-4DCT or 4DCT) to estimate tumor motion to delineate the internal tumor volume (ITV), covering the trajectory of tumor motion, as a treatment target.
Purpose: To develop a novel multi-breath time-resolved (TR) 4DCT using the super-resolution reconstruction framework with TR 4D magnetic resonance imaging (TR-4DMRI) as guidance for patient-specific breathing irregularity assessment, overcoming the shortcomings of RC-4DCT, including binning artifacts and single-breath limitations.
Langmuir
September 2024
School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China.
The permeability of methane in coal is a crucial factor in the production of coal-bed methane (CBM), which is dependent on the pore size distribution (PSD) of coal. The transverse relaxation time cutoff value () is a crucial parameter in nuclear magnetic resonance (NMR) techniques for converting NMR data into an absolute PSD. To investigate an appropriate approach for predicting the and permeability of different rank coals, this study first revealed, through centrifuge experiments with a centrifugal force of 1.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2024
Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany.
Understanding the complex dynamics of heart rate variability (HRV) during pregnancy is crucial for monitoring both maternal well-being and fetal health. In this study, we use the Multifractal Detrended Fluctuations Analysis approach to investigate HRV patterns in pregnant individuals during sleep based on RR interval maxima (MM fluctuations). In addition, we study the type of multifractality within MM fluctuations, that is, if it arises from a broad probability density function or from varying long-range correlations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!