The RNA World Hypothesis posits that the first self-replicating molecules were RNAs. RNA self-replicases are, in general, assumed to have employed nucleotide 5'-polyphosphates (or their analogues) as substrates for RNA polymerization. The mechanism by which these substrates might be synthesized with sufficient abundance to supply a growing and evolving population of RNAs is problematic for evolutionary hypotheses because non-enzymatic synthesis and assembly of nucleotide 5'-triphosphates (or other analogously activated phosphodiester species) is inherently difficult. However, nucleotide 2',3'-cyclic phosphates are also phosphodiesters, and are the natural and abundant products of RNA degradation. These have previously been dismissed as viable substrates for prebiotic RNA synthesis. We propose that the arguments for their dismissal are based on a flawed assumption, and that nucleotide 2',3'-cyclic phosphates in fact possess several significant, advantageous properties that indeed make them particularly viable substrates for prebiotic RNA synthesis. An RNA World hypothesis based upon the polymerization of nucleotide 2',3'-cyclic phosphates possesses additional explanatory power in that it accounts for the observed ribozyme "fossil record", suggests a viable mechanism for substrate transport across lipid vesicle boundaries of primordial proto-cells, circumvents the problems of substrate scarcity and implausible synthetic pathways, provides for a primitive but effective RNA replicase editing mechanism, and definitively explains why RNA, rather than DNA, must have been the original catalyst. Finally, our analysis compels us to propose that a fundamental and universal property that drives the evolution of living systems, as well as pre-biotic replicating molecules (be they composed of RNA or protein), is that they exploit chemical reactions that already possess competing kinetically-preferred and thermodynamically-preferred pathways in a manner that optimizes the balance between the two types of pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187163 | PMC |
http://dx.doi.org/10.3390/life4020131 | DOI Listing |
J Ethnopharmacol
December 2024
School of Traditional Chinese Medicine, Capital Medical University, Beijing, China. Electronic address:
Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.
Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.
Int J Surg
October 2024
Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China.
Background: Despite its involvement in nucleotide metabolism, tumor immune landscape, and immunotherapy response, the role of 2'-3'-cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP) in lung adenocarcinoma (LUAD) remails unelucidated. This study aimed to investigate the antitumor effects of 2',3'-cGAMP in LUAD.
Method: Herein, patients with LUAD were screened for prognostic biomarkers, which were then assessed for sensitivity to immunotherapy and chemotherapy utilizing the "TIDE" algorithm and CellMiner database.
J Neurochem
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway.
2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, and its loss in mice and humans causes neurodegeneration. Additionally, CNPase is frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear.
View Article and Find Full Text PDFAmino Acids
December 2024
Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain.
Nucleotide-pyrophosphatases/phosphodiesterases (NPP/PDE) are membrane or secreted Zn-metallohydrolases of nucleoside-5´-monophosphate derivatives. They hydrolyze, for instance, ATP and 4-nitrophenyl-dTMP, and belong to the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family that contains seven members (ENPP1-ENPP7). Earlier we had shown that an NPP/PDE activity solubilized and partially purified from rat liver membranes is inactivated by EDTA in a time-dependent fashion, an effect enhanced by glycine and blocked by the 4-nitrophenyl-dTMP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!