Chloroquine, an antimalarial drug, can also be used in the regulation of the immune system, e.g. it is used in the treatment of autoimmune diseases. In this study we investigated the effects of chloroquine and its hydroxy-derivative on nitric oxide (NO) production in two different cell types: (i) immortalized mouse macrophage cell line RAW 264.7 and (ii) mouse bone marrow-derived macrophages (BMDM). The cells were treated with different concentrations (1-100 μM) of chloroquine or hydroxychloroquine and stimulated with lipopolysaccharide for 24 h to induce NO production. Measurement of nitrites by the Griess reaction was used to evaluate the production of NO. Expression of inducible NO synthase was evaluated with Western blot and ATPcytotoxicity test was used to measure the viability of the cells. Our results showed that both chloroquine and its hydroxy-derivative inhibited NO production in both cell types. However, based on the results of LD50 these inhibitory effects of both derivatives were due to their cytotoxicity. The LD50 values for chloroquine were 24.77 μM (RAW 264.7) and 24.86 μM (BMDM), the LD50 for hydroxychloroquine were 13.28 μM (RAW 264.7) and 13.98 μM (BMDM). In conclusion, hydroxychloroquine was more cytotoxic than its parent molecule. Comparing the two cell types tested, our data suggest that there are no differences in cytotoxicity of chloroquine or hydroxychloroquine for primary cells (BMDM) or immortalized cell line (RAW 264.7).
Download full-text PDF |
Source |
---|
Antioxidants (Basel)
December 2024
Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
The most common bee species used for honey production is (), followed by stingless bees. This study included scientific articles using the PRISMA approach. A random effect model was implemented and the effect size (ES) was calculated and reported as the standardized mean difference (SMD) and raw mean difference (RMD).
View Article and Find Full Text PDFGels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona 08930, Spain.
The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells.
View Article and Find Full Text PDFMolecules
June 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!