Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes, we demonstrate that transcytotic transport of the major myelin-resident protein proteolipid protein (PLP) is a key element in the mechanism of myelin assembly. Upon biosynthesis, PLP traffics to myelin membranes via syntaxin 3-mediated docking at the apical-surface-like cell body plasma membrane, which is followed by subsequent internalization and transport to the basolateral-surface-like myelin sheet. Pulse-chase experiments, in conjunction with surface biotinylation and organelle fractionation, reveal that following biosynthesis, PLP is transported to the cell body surface in Triton X-100 (TX-100)-resistant microdomains. At the plasma membrane, PLP transiently resides within these microdomains and its lateral dissipation is followed by segregation into 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS)-resistant domains, internalization, and subsequent transport toward the myelin membrane. Sulfatide triggers PLP's reallocation from TX-100- into CHAPS-resistant membrane domains, while inhibition of sulfatide biosynthesis inhibits transcytotic PLP transport. Taking these findings together, we propose a model in which PLP transport to the myelin membrane proceeds via a transcytotic mechanism mediated by sulfatide and characterized by a conformational alteration and dynamic, i.e., transient, partitioning of PLP into distinct membrane microdomains involved in biosynthetic and transcytotic transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295386 | PMC |
http://dx.doi.org/10.1128/MCB.00848-14 | DOI Listing |
Toxins (Basel)
December 2024
Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain.
Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
December 2024
Skolkovo Institute of Science and Technology, Moscow, Russia.
Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Development of an understanding of membrane nanodomains colloquially known as "lipid rafts" has been hindered by a lack of pharmacological tools to manipulate rafts and protein affinity for rafts. We screened 24,000 small molecules for modulators of the affinity of peripheral myelin protein 22 (PMP22) for rafts in giant plasma membrane vesicles (GPMVs). Hits were counter-screened against another raft protein, MAL, and tested for impact on raft , leading to two classes of compounds.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China. Electronic address:
To develop a scaffold suitable for simultaneous repair of both spinal cord injury (SCI) and sciatic nerve injury (SNI), we designed a multilayer composite membrane capable of unidirectional and sustained release of two factors: nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The membrane's morphology, mechanical properties, cytocompatibility, drug release kinetics, swelling, and degradation behavior were thoroughly characterized. Additionally, its ability to promote the differentiation of PC-12 cells was assessed.
View Article and Find Full Text PDFJ Pathol
December 2024
Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
White matter damage and subsequent demyelination significantly contribute to long-term functional impairment after ischaemic stroke. Identifying novel pharmacological targets to restore myelin integrity by promoting the maturation of oligodendrocyte precursor cells (OPCs) into new myelinating oligodendrocytes may open new perspectives for ischaemic stroke treatment. In this respect, previous studies highlighted the role of the G protein-coupled membrane receptor 17 (GPR17) as a key regulator of OPC differentiation in experimental models of brain injury, including ischaemic stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!