Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.

Proc Natl Acad Sci U S A

Interdisciplinary Graduate Program in Molecular Medicine, Chonnam National University, Gwangju 501-746, Korea; Department of Chemistry, Chonnam National University, Gwangju 500-757, Korea;

Published: November 2014

Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246338PMC
http://dx.doi.org/10.1073/pnas.1410806111DOI Listing

Publication Analysis

Top Keywords

sf2 helicase
12
type crispr-cas
8
crispr-cas systems
8
atp analog
8
structures reveal
8
cas3
5
molecular insights
4
dna
4
insights dna
4
dna interference
4

Similar Publications

The Role of SF1 and SF2 Helicases in Biotechnological Applications.

Appl Biochem Biotechnol

December 2024

Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China.

Helicases, which utilize ATP hydrolysis to separate nucleic acid duplexes, play crucial roles in DNA and RNA replication, repair, recombination, and transcription. Categorized into the major groups superfamily 1 (SF1) and superfamily 2 (SF2), alongside four minor groups, these proteins exhibit a conserved catalytic core indicative of a shared evolutionary origin while displaying functional diversity through interactions with various substrates. This review summarizes the structures, functions and mechanisms of SF1 and SF2 helicases, with an emphasis on conserved ATPase sites and RecA-like domains essential for their enzymatic and nucleic acid binding capabilities.

View Article and Find Full Text PDF

Genome-wide identification and analysis of DEAD-box RNA helicases in Gossypium hirsutum.

Gene

August 2024

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China; Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830017, Xinjiang Autonomous Region, China. Electronic address:

DEAD-box RNA helicases, a prominent subfamily within the RNA helicase superfamily 2 (SF2), play crucial roles in the growth, development, and abiotic stress responses of plants. This study identifies 146 DEAD-box RNA helicase genes (GhDEADs) and categorizes them into four Clades (Clade A-D) through phylogenetic analysis. Promoter analysis reveals cis-acting elements linked to plant responses to light, methyl jasmonate (MeJA), abscisic acid (ABA), low temperature, and drought.

View Article and Find Full Text PDF

Helicases, motor proteins present in both prokaryotes and eukaryotes, play a direct role in various steps of RNA metabolism. Specifically, SF2 RNA helicases, a subset of the DEAD-box family, are essential players in plant developmental processes and responses to biotic and abiotic stresses. Despite this, information on this family in the physic nut ( L.

View Article and Find Full Text PDF

Helicases are the motor proteins not only involved in transcriptional and post-transcription process but also provide abiotic stress tolerance in many crops. The p68, belong to the SF2 (DEAD-box helicase) family proteins and overexpression of Psp68 providing enhanced tolerance to transgenic rice plants. In this study, salinity tolerant marker-free transgenic rice has been developed by overexpressing Psp68 gene and phenotypically characterized.

View Article and Find Full Text PDF

Biochemical characterisation of Mer3 helicase interactions and the protection of meiotic recombination intermediates.

Nucleic Acids Res

May 2023

Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany.

Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!