Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment.

Mol Neurobiol

Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA, 02129-2060, USA.

Published: December 2015

Anesthetic isoflurane has been reported to induce caspase-3 activation. The underlying mechanism(s) and targeted intervention(s), however, remain largely to be determined. Vitamin C (VitC) inhibits oxidative stress and apoptosis. We therefore employed VitC to further determine the up-stream mechanisms and the down-stream consequences of the isoflurane-induced caspase-3 activation. H4 human neuroglioma cells overexpressed human amyloid precursor protein (H4-APP cells) and rat neuroblastoma cells were treated either with (1) 2% isoflurane or (2) with the control condition, plus saline or 400 μM VitC for 3 or 6 h. Western blot analysis and fluorescence assay were utilized at the end of the experiments to determine caspase-3 activation, levels of reactive oxygen species and ATP, and mitochondrial function. The interaction of isoflurane (1.4% for 2 h) and VitC (100 mg/kg) on cognitive function in mice was also assessed in the fear conditioning system. Here, we show for the first time that the VitC treatment attenuated the isoflurane-induced caspase-3 activation. Moreover, VitC mitigated the isoflurane-induced increases in the levels of reactive oxygen species, opening of mitochondrial permeability transition pore, reduction in mitochondrial membrane potential, and the reduction in ATP levels in the cells. Finally, VitC ameliorated the isoflurane-induced cognitive impairment in the mice. Pending confirmation from future studies, these results suggested that VitC attenuated the isoflurane-induced caspase-3 activation and cognitive impairment by inhibiting the isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. These findings would promote further research into the underlying mechanisms and targeted interventions of anesthesia neurotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418956PMC
http://dx.doi.org/10.1007/s12035-014-8959-3DOI Listing

Publication Analysis

Top Keywords

caspase-3 activation
24
isoflurane-induced caspase-3
16
cognitive impairment
12
activation cognitive
8
underlying mechanisms
8
mechanisms targeted
8
targeted interventions
8
vitc
8
oxidative stress
8
levels reactive
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem).

View Article and Find Full Text PDF

Melatonin Prevents Thymic Atrophy but Does Not Protect Against Disruption of T Cell Maturation Related to Cyclophosphamide Exposure.

Cell Biochem Funct

February 2025

Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil.

Increased oxidative stress and apoptosis are key mechanisms of thymic atrophy induced by cyclophosphamide (CYP). Atrophy leads to changes in the thymic microenvironment and disrupts T cell maturation. The hormone melatonin displays antioxidant and antiapoptotic effects.

View Article and Find Full Text PDF

The present study aimed to investigate the cardioprotective effects of acteoside (AC) on myocardial ischemia‑reperfusion injury (MIRI). To meet this aim, a network pharmacological analysis was conducted to search for key genes and signaling pathways associated with AC and MIRI. The infarct size of the rat heart was evaluated using 2,3,5‑triphenyltetrazolium chloride staining, and the serum levels of creatine kinase MB isoenzyme, cardiac troponin I, malondialdehyde and superoxide dismutase were subsequently detected in an experiment.

View Article and Find Full Text PDF

Platinum(IV) Complexes Trigger Death Receptors and Natural Killer Cells to Suppress Breast Cancer.

J Med Chem

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.

Chemoimmunotherapy is an alternative treatment against cancers. Platinum(IV) complexes FMP and DFMP, coupling formononetin derivative as axial ligand(s), were designed to suppress triple-negative breast cancer (TNBC) by activating death receptors (DRs) and natural killer (NK) cells. These complexes show great potential to overcome the resistance of TNBC to chemotherapy by inducing both intrinsic and extrinsic apoptosis in cancer cells.

View Article and Find Full Text PDF

Objective: Cognitive impairment (CI) is highly prevalent in subarachnoid hemorrhage (SAH) patients. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway plays a critical role in neuronal survival in a variety of central nervous system injuries. This study aimed to determine whether electroacupuncture (EA) at and LI20 ameliorates SAH-CI in a rat model and to examine whether it modulates the PI3K/AKT pathway by administering a PI3K inhibitor (LY294002) versus dimethyl sulfoxide (DMSO) vehicle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!