The purpose of this study is to determine if there are differences in the expression of estrogen-regulated genes (ERGs), proliferation-associated genes and the progesterone effector RANKL, in premenopausal ER+ breast cancer as a result of the major changes in hormone levels that occur through the menstrual cycle. Primary ER+ tumours from 174 patients were assigned to one of three menstrual cycle windows: W1 (days 27-35 + 1-6), W2 (days 7-16) and W3 (days 17-26). RNA expression of 42 genes, including 24 putative genes associated with plasma E2 levels, seven proliferation genes and RANKL was measured. Expression of PGR, TFF1, GREB1 and PDZK1 followed the previously reported pattern: a higher level in W2 compared to W1 while W3 had an intermediate value, mirroring changes in plasma estradiol. Of the other 20 ERGs, four (RUNX1, AGR2, SERPINA3 and SERPINA5) showed significant differences (p = 0.009-0.049) in expression across the menstrual cycle. The expression of six of seven proliferation-associated genes varied across the cycle but differently from the ERGs, being 20-35 % lower in W3 compared to W1 and W2 (p = 0.004-0.031). Expression of RANKL was 2.5 to 3-fold highest in W3 (p = 0.0001) and negatively correlated to the expression of the proliferation-associated genes (r = -0.37; p < 0.0001). Expression of proliferation-associated genes and RANKL in ER+ breast tumours varies across the menstrual cycle showing a different rhythm to that of ERGs. This may affect the interpretation of gene expression profiles but may be exploitable as an endogenous test of endocrine responsiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-014-3181-6DOI Listing

Publication Analysis

Top Keywords

proliferation-associated genes
16
menstrual cycle
16
expression proliferation-associated
12
differences expression
8
genes
8
genes rankl
8
breast cancer
8
expression
7
cycle
5
proliferation-associated
4

Similar Publications

Background: Our previous study has identified an association of a single nucleotide polymorphism (SNP) in the miR-423 gene with recurrent spontaneous abortion (RSA). The presence of additional RSA-linked SNPs in the miR-423 gene remains unclear.

Methods: We evaluated polymorphisms in the coding region of miR-423 in Han Chinese women with unexplained RSA (URSA).

View Article and Find Full Text PDF

Background: The effects of ionizing radiation (IR) involve a highly orchestrated series of events in cells, including DNA damage and repair, cell death, and changes in the level of proliferation associated with the stage of the cell cycle. A large number of existing studies in literature have examined the activity of genes and their regulators in mammalian cells in response to high doses of ionizing radiation. Although there are many studies, the research in effect of low doses of ionizing radiation remains limited.

View Article and Find Full Text PDF

Introduction: Placental extracellular vesicles (EVs), lipid-enclosed particles released from the placenta, can facilitate intercellular communication and are classified as micro- or nano-EVs depending on size. Placental EVs contain molecules associated with cell proliferation and death. In this study, we investigated whether treating human ovarian tumour explants with placental EVs could induce ovarian tumour cell death.

View Article and Find Full Text PDF

miR-193b-5p and miR-374b-5p Are Aberrantly Expressed in Endometriosis and Suppress Endometrial Cell Migration In Vitro.

Biomolecules

November 2024

WHO Collaborating Centre, Division of Neonatology, Obstetrics, Gynecology, and Reproductive Health, Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, SE 17176 Stockholm, Sweden.

(1) Background: Endometriosis is a highly prevalent gynecological disease affecting 10% of women of reproductive age worldwide. miRNAs may play a role in endometriosis, though their exact function remains unclear. This study aimed to identify differentially expressed miRNAs in endometriosis and study their functions in the disease.

View Article and Find Full Text PDF

Non-Immune-Mediated, p27-Associated, Growth Inhibition of Glioblastoma by Class-II-Transactivator (CIITA).

Cells

November 2024

Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands.

Background: Previous works have shown that the expression of Class-II-Transactivator (CIITA) in tumor cells reduces the growth of glioblastoma (GB) in animal models, but immune effects cannot solely explain this. Here, we searched for immune-independent effects of CIITA on the proliferation of GB.

Methods: Murine GL261 and human U87, GM2 and GM3 malignant glioma cells were transfected with CIITA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!