The Skyrme-particle, the skyrmion, was introduced over half a century ago in the context of dense nuclear matter. But with skyrmions being mathematical objects--special types of topological solitons--they can emerge in much broader contexts. Recently skyrmions were observed in helimagnets, forming nanoscale spin-textures. Extending over length scales much larger than the interatomic spacing, they behave as large, classical objects, yet deep inside they are of quantum nature. Penetrating into their microscopic roots requires a multi-scale approach, spanning the full quantum to classical domain. Here, we achieve this for the first time in the skyrmionic Mott insulator Cu2OSeO3. We show that its magnetic building blocks are strongly fluctuating Cu4 tetrahedra, spawning a continuum theory that culminates in 51 nm large skyrmions, in striking agreement with experiment. One of the further predictions that ensues is the temperature-dependent decay of skyrmions into half-skyrmions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms6376 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!