Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215186 | PMC |
http://dx.doi.org/10.1101/gad.241588.114 | DOI Listing |
PLoS Genet
December 2024
Department of Biology, McGill University, Montréal, Canada.
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
Cardiotoxicity associated with hepatic metabolism and drug-drug interactions is a serious concern. Predicting drug toxicity using animals remains challenging due to species and ethical concerns, necessitating the need to develop alternative approaches. Drug cardiotoxicity associated with hepatic metabolism cannot be detected using a cardiomyocyte-only evaluation system.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan.
Unlabelled: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model.
Methods: A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data.
Wiad Lek
December 2024
I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, MINISTRY OF HEALTH OF UKRAINE, TERNOPIL, UKRAINE.
Objective: Aim: To determine the effect of cell therapy on the intensity of lipid peroxidation processes in the liver, kidneys and lungs of rats of different ages under conditions of experimental cranio-skeletal trauma (CST).
Patients And Methods: Materials and Methods: In the experiments, 129 white male Wistar line rats of different age groups were used: immature rats aged 100-120 days and weighing 90-110 g; mature rats aged 6-8 months and weighing 180-200 g; and old rats aged 19-23 months and weighing 300-320 g. In each age group, CST was modeled under thiopental sodium anesthesia.
Neural Regen Res
November 2025
Department of Neuroscience, Ohio State University, Columbus, OH, USA.
In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!