Pleiotropic mutants of Alcaligenes eutrophus with the phenotype Hno- have been characterized previously. They are deficient in several diverse metabolic activities, including hydrogen oxidation, nitrate and urea assimilation, denitrification, and various substrate transport systems. Phenotypically similar mutants were identified among hydrogenase-deficient strains of Pseudomonas facilis. The Tn5-labeled hno gene was cloned from a genomic DNA library of A. eutrophus and used to identify the corresponding unimpaired wild-type DNA sequence. The recombinant plasmid pCH148 contained an insert of 12.3 kilobase pairs and was shown to restore the Hno+ phenotype to mutants of A. eutrophus and P. facilis. A cosmid isolated from a DNA library of P. facilis also exhibited intergeneric Hno-complementing activity. The cloned hno loci from both organisms showed DNA homology by Southern blot hybridization. A subclone of pCH148 which contained a 6.5-kilobase-pair insert was constructed. The resulting hybrid, pCH170, not only was able to complement Hno- mutants but also relieved glutamine auxotrophy in NtrA- mutants of enteric bacteria. This suggests that the hno gene product from A. eutrophus is functionally similar to the NtrA protein, which has been identified as a novel sigma factor (sigma 54) of RNA polymerase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC209706PMC
http://dx.doi.org/10.1128/jb.171.2.1093-1099.1989DOI Listing

Publication Analysis

Top Keywords

alcaligenes eutrophus
8
pseudomonas facilis
8
diverse metabolic
8
including hydrogen
8
hydrogen oxidation
8
hno gene
8
dna library
8
pch148 contained
8
eutrophus
5
mutants
5

Similar Publications

Advanced genome engineering enables precise and customizable modifications of bacterial species, and toolsets that exhibit broad-host compatibility are particularly valued owing to their portability. Tn5 transposon vectors have been widely used to establish random integrations of desired DNA sequences into bacterial genomes. However, the iteration of the procedure remains challenging because of the limited availability and reusability of selection markers.

View Article and Find Full Text PDF

Background: Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity.

View Article and Find Full Text PDF

Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars.

Bioresour Technol

December 2024

Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:

Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C.

View Article and Find Full Text PDF

Recent Trends in the Production and Recovery of Bioplastics Using Polyhydroxyalkanoates Copolymers.

Microorganisms

October 2024

Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico.

Article Synopsis
  • * Among PHAs, the P(3HB--3HV) copolymers are notable for their soft, flexible nature, making them suitable for a wider range of applications, particularly in bioplastics.
  • * Recent advancements have focused on enhancing PHA production through innovative fermentation strategies using various microbial strains and low-cost substrates, aiming to improve the yield and mechanical properties of copolymers for biomedical uses.
View Article and Find Full Text PDF

Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide.

World J Microbiol Biotechnol

November 2024

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

The rapid global increase in fossil fuel and energy consumption has resulted in the accumulation of greenhouse gases, especially carbon dioxide (CO), thus contributing to climate change. Therefore, transforming CO into valuable products could yield beneficial outcomes. In this review, the capabilities of Cupriavidus necator H16, a light-independent chemoautotrophic bacterium, as a host platform for the transformation of CO into diverse products are explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!