MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane.

Nat Commun

Molecular Cellular Biology Laboratory, Yokohama City University, Graduate School of Medical Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Published: November 2014

Recent studies have revealed the presence of a microtubule subpopulation called Golgi-derived microtubules that support Golgi ribbon formation, which is required for maintaining polarized cell migration. CLASPs and AKAP450/CG-NAP are involved in their formation, but the underlying molecular mechanisms remain unclear. Here, we find that the microtubule-crosslinking protein, MTCL1, is recruited to the Golgi membranes through interactions with CLASPs and AKAP450/CG-NAP, and promotes microtubule growth from the Golgi membrane. Correspondingly, MTCL1 knockdown specifically impairs the formation of the stable perinuclear microtubule network to which the Golgi ribbon tethers and extends. Rescue experiments demonstrate that besides its crosslinking activity mediated by the N-terminal microtubule-binding region, the C-terminal microtubule-binding region plays essential roles in these MTCL1 functions through a novel microtubule-stabilizing activity. These results suggest that MTCL1 cooperates with CLASPs and AKAP450/CG-NAP in the formation of the Golgi-derived microtubules, and mediates their development into a stable microtubule network.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms6266DOI Listing

Publication Analysis

Top Keywords

clasps akap450/cg-nap
12
golgi membrane
8
golgi-derived microtubules
8
golgi ribbon
8
microtubule network
8
microtubule-binding region
8
mtcl1
5
golgi
5
mtcl1 crosslinks
4
crosslinks stabilizes
4

Similar Publications

MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane.

Nat Commun

November 2014

Molecular Cellular Biology Laboratory, Yokohama City University, Graduate School of Medical Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Recent studies have revealed the presence of a microtubule subpopulation called Golgi-derived microtubules that support Golgi ribbon formation, which is required for maintaining polarized cell migration. CLASPs and AKAP450/CG-NAP are involved in their formation, but the underlying molecular mechanisms remain unclear. Here, we find that the microtubule-crosslinking protein, MTCL1, is recruited to the Golgi membranes through interactions with CLASPs and AKAP450/CG-NAP, and promotes microtubule growth from the Golgi membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!