Field-evolved resistance to the herbicide glyphosate is due to amplification of one of two EPSPS alleles, increasing transcription and protein with no splice variants or effects on other pathway genes. The widely used herbicide glyphosate inhibits the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Globally, the intensive use of glyphosate for weed control has selected for glyphosate resistance in 31 weed species. Populations of suspected glyphosate-resistant Kochia scoparia were collected from fields located in the US central Great Plains. Glyphosate dose response verified glyphosate resistance in nine populations. The mechanism of resistance to glyphosate was investigated using targeted sequencing, quantitative PCR, immunoblotting, and whole transcriptome de novo sequencing to characterize the sequence and expression of EPSPS. Sequence analysis showed no mutation of the EPSPS Pro106 codon in glyphosate-resistant K. scoparia, whereas EPSPS genomic copy number and transcript abundance were elevated three- to ten-fold in resistant individuals relative to susceptible individuals. Glyphosate-resistant individuals with increased relative EPSPS copy numbers had consistently lower shikimate accumulation in leaf disks treated with 100 μM glyphosate and EPSPS protein levels were higher in glyphosate-resistant individuals with increased gene copy number compared to glyphosate-susceptible individuals. RNA sequence analysis revealed seven nucleotide positions with two different expressed alleles in glyphosate-susceptible reads. However, one nucleotide at the seven positions was predominant in glyphosate-resistant sequences, suggesting that only one of two EPSPS alleles was amplified in glyphosate-resistant individuals. No alternatively spliced EPSPS transcripts were detected. Expression of five other genes in the chorismate pathway was unaffected in glyphosate-resistant individuals with increased EPSPS expression. These results indicate increased EPSPS expression is a mechanism for glyphosate resistance in these K. scoparia populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-014-2197-9DOI Listing

Publication Analysis

Top Keywords

glyphosate-resistant individuals
16
glyphosate resistance
12
individuals increased
12
epsps
11
glyphosate
9
glyphosate-resistant
8
glyphosate-resistant kochia
8
kochia scoparia
8
herbicide glyphosate
8
epsps alleles
8

Similar Publications

Affecting of Glyphosate Tolerance and Metabolite Content in Transgenic Overexpressing Gene from .

Plants (Basel)

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.

View Article and Find Full Text PDF

EPSPS gene amplification in a glyphosate-resistant population of Italian ryegrass (Lolium multiflorum) from Oregon.

Pest Manag Sci

February 2025

Forage Seed and Cereal Research Unit, United States Department of Agriculture, Corvallis, OR, USA.

Article Synopsis
  • - Lolium multiflorum (Italian ryegrass) is found in Oregon as both a weed and a crop, and herbicide-resistant populations have developed due to chemical management practices.
  • - A glyphosate-resistant population identified in Yamhill County shows a nine-fold increase in resistance to glyphosate compared to a susceptible group, with no known amino acid mutations linked to resistance.
  • - The resistance is linked to a significant increase (30-fold) in copies of the EPSPS gene, marking the first instance of this type of genetic amplification in glyphosate-resistant L. multiflorum in Oregon.
View Article and Find Full Text PDF

Herbicide-resistant Conyza spp. are a threat to many crops. These widespread weeds are closely related species and often cooccur.

View Article and Find Full Text PDF

The increasing use of the herbicide mixture of glyphosate, dicamba and 2-4-D to deal with glyphosate-resistant weeds raises concerns regarding human health and environmental risks. This study aimed to evaluate the effects of developmental exposure to glyphosate and a herbicide mixture containing glyphosate, dicamba and 2-4-D on rat dams' kidney and thyroid function and offspring's health. Pregnant Wistar rats were exposed from day-6 of gestation till weaning to regulatory relevant doses of glyphosate corresponding to the European Union (EU) acceptable daily intake (ADI; 0.

View Article and Find Full Text PDF

Wide-scale emergence of glyphosate-resistant weeds has led to an increase in the simultaneous application of herbicide mixtures exacerbated by the introduction of crops tolerant to glyphosate plus dicamba or glyphosate plus 2,4-D. This raises serious concerns regarding the environmental and health risks resulting from increased exposure to a mixture of herbicide active ingredients. We evaluated hepatotoxic effects following perinatal exposure to glyphosate alone or in combination with 2,4-D and dicamba from gestational day-6 until adulthood in Wistar rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!