Heat shock protein 90 (HSP90) is a ubiquitous molecular chaperone involved in the proper conformation of many proteins. HSP90 inhibitors (17-dimethyl aminoethylamino-17-demethoxygeldanamycin hydrochloride [17-DMAG]) bind to and inactivate HSP90, suppressing some key signaling pathways involved in the inflammatory process. Since considerable evidence suggests that inflammation accounts for the progression of cerebral ischemic injury, we investigated whether 17-DMAG can modulate inflammatory responses in middle cerebral artery occluded (MCAO) mice. Male C57/BL6 mice were pretreated with 17-DMAG or vehicle for 7 d before being subjected to transient occlusion of middle cerebral artery and reperfusion. Mice were evaluated at 24 h after MCAO for neurological deficit scoring. Moreover, the mechanism of the anti-inflammatory effect of 17-DMAG was investigated with a focus on nuclear factor kappa B (NF-κB) pathway. 17-DMAG significantly reduced cerebral infarction and improved neurological outcome. 17-DMAG suppressed activation of microglia and decreased phosphorylation of inhibitory (I)κB and subsequent nuclear translocation of p65, which eventually downregulated expression of NF-κB-regulated genes. These results suggest that 17-DMAG has a promising therapeutic effect in ischemic stroke treatment through an anti-inflammatory mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b14-00208DOI Listing

Publication Analysis

Top Keywords

inflammatory responses
8
middle cerebral
8
cerebral artery
8
17-dmag
6
17-dimethylaminoethylamino-17-demethoxygeldanamycin attenuates
4
attenuates inflammatory
4
responses experimental
4
experimental stroke
4
stroke heat
4
heat shock
4

Similar Publications

Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.

Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.

View Article and Find Full Text PDF

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!