Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii.

J Evol Biol

Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA), Buenos Aires, Argentina.

Published: December 2014

Host shifts cause drastic consequences on fitness in cactophilic species of Drosophila. It has been argued that changes in the nutritional values accompanying host shifts may elicit these fitness responses, but they may also reflect the presence of potentially toxic secondary compounds that affect resource quality. Recent studies reported that alkaloids extracted from the columnar cactus Trichocereus terscheckii are toxic for the developing larvae of Drosophila buzzatii. In this study, we tested the effect of artificial diets including increasing doses of host alkaloids on developmental stability and wing morphology in D. buzzatii. We found that alkaloids disrupt normal wing venation patterning and affect viability, wing size and fluctuating asymmetry, suggesting the involvement of stress-response mechanisms. Theoretical implications are discussed in the context of developmental stability, stress, fitness and their relationship with robustness, canalization and phenotypic plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeb.12537DOI Listing

Publication Analysis

Top Keywords

developmental stability
12
host alkaloids
8
stability wing
8
drosophila buzzatii
8
host shifts
8
host
4
alkaloids differentially
4
differentially affect
4
affect developmental
4
wing
4

Similar Publications

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.

Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.

View Article and Find Full Text PDF

Metabolic dependency mapping identifies Peroxiredoxin 1 as a driver of resistance to ATM inhibition.

Redox Biol

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, 37 Convent Drive, Bethesda, MD, 20892, USA. Electronic address:

Metabolic pathways fuel tumor progression and resistance to stress conditions including chemotherapeutic drugs, such as DNA damage response (DDR) inhibitors. Yet, significant gaps persist in how metabolic pathways confer resistance to DDR inhibition in cancer cells. Here, we employed a metabolism-focused CRISPR knockout screen and identified genetic vulnerabilities to DDR inhibitors.

View Article and Find Full Text PDF

Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy marked by drug-resistant seizures and profound cognitive and behavioral impairments, with nearly 95% of individuals affected by moderate to severe intellectual disability. This review comprehensively explores the cognitive and behavioral impacts of current treatment options for LGS, including antiseizure medications (ASMs), neuromodulation strategies, the ketogenic diet, and surgical interventions. Given the limited availability of LGS-specific data for several ASMs, the evidence base is supplemented with findings from general epilepsy populations and individuals with epilepsy and intellectual disabilities.

View Article and Find Full Text PDF

Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis.

Proc Natl Acad Sci U S A

January 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!