The distribution of adipose tissue in the body has wide-ranging and reproducible associations with health and disease. Accumulation of adipose tissue in the upper body (abdominal obesity) is associated with the development of cardiovascular disease, insulin resistance, type 2 diabetes mellitus and even all-cause mortality. Conversely, accumulation of fat in the lower body (gluteofemoral obesity) shows opposite associations with cardiovascular disease and type 2 diabetes mellitus when adjusted for overall fat mass. The abdominal depots are characterized by rapid uptake of predominantly diet-derived fat and a high lipid turnover that is easily stimulated by adrenergic receptor activation. The lower-body fat stores have a reduced lipid turnover with a capacity to accommodate fat undergoing redistribution. Lower-body adipose tissue also seems to retain the capacity to recruit additional adipocytes as a result of weight gain and demonstrates fewer signs of inflammatory insult. New data suggest that the profound functional differences between the upper-body and lower-body tissues are controlled by site-specific sets of developmental genes, such as HOXA6, HOXA5, HOXA3, IRX2 and TBX5 in subcutaneous abdominal adipose tissue and HOTAIR, SHOX2 and HOXC11 in gluteofemoral adipose tissue, which are under epigenetic control. This Review discusses the developmental and functional differences between upper-body and lower-body fat depots and provides mechanistic insight into the disease-protective effects of lower-body fat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrendo.2014.185 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
January 2025
College of Sport and Health, Shandong Sport University, Jinan, Shandong, 250102, China.
Obesity can change the immune microenvironment of adipose tissue and induce inflammation. This study is dedicated to exploring the internal mechanism by which different intensities of exercise reprogram the immune microenvironment of epididymal adipose tissue in nutritionally obese mice. C57BL/6J male obese mouse models were constructed by high-fat diet, which were respectively obese control group (OC), moderate intensity continuous exercise group (HF-M), high intensity continuous exercise group (HF-H) and high intensity intermittent exercise group (HF-T).
View Article and Find Full Text PDFNanotheranostics
January 2025
Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
Feline Idiopathic Cystitis (FIC), is a chronic lower urinary tract condition in cats analogous to PBS/IC in women, which presents significant treatment challenges due to its idiopathic nature. Recent advancements in regenerative medicine highlight the potential of Adipose Tissue-Derived Stem Cells (ADSCs), particularly through their secretome, which includes mediators, bioactive molecules, and extracellular vesicles (EVs). Notably, exosomes, a subset of EVs, facilitate cell-to-cell communication and, when derived from ADSCs, exhibit anti-inflammatory properties and contribute to tissue regeneration.
View Article and Find Full Text PDFNat Rev Cardiol
January 2025
Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550004, China.
Background: Intra-pancreatic fat deposition (IPFD) is linked to metabolic and pancreatic diseases. MRI, while precise, is not cost-effective for routine IPFD screening, highlighting the need for accessible biomarkers. This study aims to analyze the relationships among serum lipid profiles, lipoprotein ratios, and IPFD, with a focus on sex differences.
View Article and Find Full Text PDFMetabolism
December 2024
Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium. Electronic address:
Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent liver disease worldwide, continues to rise. More effective therapeutic strategies are urgently needed. We investigated how targeting two key nuclear receptors involved in hepatic energy metabolism, peroxisome proliferator-activated receptor alpha (PPARα) and estrogen-related receptor alpha (ERRα), ameliorates MASLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!