A monomeric basic PLA₂ (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA₂ enzyme class and displays conserved domains as the catalytic network, Ca²⁺-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA₂ showed an allosteric behavior and its enzymatic activity was dependent on Ca²⁺. Examination of PhTX-II PLA₂ by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA₂ causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA₂ that contributes with toxic actions caused by P. hyoprora venom.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247251PMC
http://dx.doi.org/10.3390/toxins6113077DOI Listing

Publication Analysis

Top Keywords

phtx-ii pla₂
12
enzymatic activity
12
phtx-ii
9
porthidium hyoprora
8
amino acid
8
acid sequence
8
mass spectrometry
8
hyoprora venom
8
asp49 pla₂
8
catalytic activity
8

Similar Publications

A monomeric basic PLA₂ (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA₂ enzyme class and displays conserved domains as the catalytic network, Ca²⁺-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!