Vertically stacked color tunable light-emitting diodes fabricated using wafer bonding and transfer printing.

ACS Appl Mater Interfaces

Department of Nanobio Materials and Electronics and ‡School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.

Published: November 2014

We report on the vertically stacked color tunable light-emitting diodes (LEDs) fabricated using wafer bonding with an indium tin oxide (ITO) layer and transfer printing by the laser lift-off process. Employing optically transparent and electrically conductive ITO as an adhesion layer enables to bond the GaN-based blue and AlGaInP-based yellow LEDs. We find out that the interdiffusion of In, O, and Ga at the interface between ITO and GaP allows the strong bonding of the heterogeneous optoelectronic materials and the integration of two different color LEDs on a single substrate. The efficacy of this method is demonstrated by showing the successful control of color coordinate from the vertically stacked LEDs by modulating the individual intensity of blue and yellow emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am505415qDOI Listing

Publication Analysis

Top Keywords

vertically stacked
12
stacked color
8
color tunable
8
tunable light-emitting
8
light-emitting diodes
8
fabricated wafer
8
wafer bonding
8
transfer printing
8
color
4
diodes fabricated
4

Similar Publications

Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.

View Article and Find Full Text PDF

Light-Triggered Reversible Assembly of Halide Perovskite Nanoplatelets.

Adv Mater

December 2024

Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.

Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D CsBiI halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red.

View Article and Find Full Text PDF

The volitional control of powered assistive devices is commonly performed by mapping the electromyographic (EMG) activity of the lower limb to joints' angular kinematics, which are then used as the input for regulation. However, during walking, the ground reaction force (GRF) plays a central role in the modulation of the gait, providing dynamic stability and propulsion during the stance phase. Including this information within the control loop of prosthetic devices can improve the quality of the final output, providing more physiological walking dynamics that enhances the usability and patient comfort.

View Article and Find Full Text PDF

Introducing uniform magnetic order in two-dimensional (2D) topological insulators by constructing heterostructures of TI and magnet is a promising way to realize the high-temperature Quantum Anomalous Hall effect. However, the topological properties of 2D materials are susceptible to several factors that make them difficult to maintain, and whether topological interface states (TISs) can exist at magnetic-topological heterostructure interfaces is largely unknown. Here, it is experimentally shown that TISs in a lateral heterostructure of CrTe/Bi(110) are robust against disorder, defects, high magnetic fields (time-reversal symmetry-breaking perturbations), and elevated temperature (77 K).

View Article and Find Full Text PDF

The development and application of a new method for quantifying total atmospheric sulfur in the Alberta Oil Sands.

J Air Waste Manag Assoc

December 2024

Air Quality Process Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada.

Continuous ambient sulfur measurements are routinely conducted around the globe at numerous monitoring sites impacted by industrial sources such as gas and oil processing facilities, pulp and paper mills, smelters, sewage treatment facilities, or concentrated animal feeding operations, as well as natural sources such as volcanoes. Various jurisdictions have or plan to establish Air Ambient Quality Objectives/Guidelines/Standards for Total Reduced Sulfur (TRS) based on odor perception and/or health effects. A conventional TRS monitoring technique is widely used, but few studies have looked at potential biases in the resulting TRS measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!