The pervasive and potentially severe economic, social, and public health consequences of infectious disease in farmed animals require that plans be in place for a rapid response. Increasingly, agent-based models are being used to analyze the spread of animal-borne infectious disease outbreaks and derive policy alternatives to control future outbreaks. Although the locations, types, and sizes of animal farms are essential model inputs, no public domain nationwide geospatial database of actual farm locations and characteristics currently exists in the United States. This report describes a novel method to develop a synthetic dataset that replicates the spatial distribution of poultry farms, as well as the type and number of birds raised on them. It combines county-aggregated poultry farm counts, land use/land cover, transportation, business, and topographic data to generate locations in the conterminous United States where poultry farms are likely to be found. Simulation approaches used to evaluate the accuracy of this method when compared to that of a random placement alternative found this method to be superior. The results suggest the viability of adapting this method to simulate other livestock farms of interest to infectious disease researchers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215551 | PMC |
http://dx.doi.org/10.3768/rtipress.2012.mr.0023.1201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!