The cutting of single-walled carbon nanotubes by an 80 keV electron beam catalyzed by nickel clusters is imaged in situ using aberration-corrected high-resolution transmission electron microscopy. Extensive molecular dynamics simulations within the CompuTEM approach provide insight into the mechanism of this process and demonstrate that the combination of irradiation and the nickel catalyst is crucial for the cutting process to take place. The atomistic mechanism of cutting is revealed by a detailed analysis of irradiation-induced reactions of bond reorganization and atom ejection in the vicinity of the nickel cluster, showing a highly complex interplay of different chemical transformations catalysed by the metal cluster. One of the most prevalent pathways includes three consecutive stages: formation of polyyne carbon chains from the carbon nanotube, dissociation of the carbon chains into single and pairs of adatoms adsorbed on the nickel cluster, and ejection of these adatoms leading to the cutting of the nanotube. Significant variations in the atom ejection rate are discovered depending on the process stage and nanotube diameter. The revealed mechanism and kinetic characteristics of the cutting process provide fundamental knowledge for the development of new methodologies for control and manipulation of carbon structures at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr05006aDOI Listing

Publication Analysis

Top Keywords

atomistic mechanism
8
carbon nanotube
8
catalyzed nickel
8
electron beam
8
cutting process
8
atom ejection
8
nickel cluster
8
carbon chains
8
carbon
6
cutting
6

Similar Publications

Background: An explicit molecular level understanding of Alzheimer's Disease (AD) remains elusive. What initiates the disease and why does it progress? Answering these questions will be crucial to the development of much needed new diagnostics and therapeutics. Though the amyloid hypothesis is often debated, recent biologic trial results support a role for Aβ in AD pathogenesis.

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

The dynamics and functionality of proteins are significantly influenced by their interaction with water. For lyophilised ( ≤ 0.05 where = g of HO per g of protein) and weakly hydrated systems ( ≤ 0.

View Article and Find Full Text PDF

Unveiling the self-assembly process of gellan-chitosan complexes through a combination of atomistic simulations and experiments.

Int J Biol Macromol

December 2024

Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. Electronic address:

Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required.

View Article and Find Full Text PDF

Fouling-resistant coating materials have important applications in marine industry and biomedicine. Zwitterionic carboxybetaine polymers have demonstrated robust antibiofouling functionalities in experiments. In this work, we performed atomistic molecular dynamics simulations to study the molecular mechanism of hydration and antibiofouling of poly(carboxybetaine acrylamide) (polyCBAA) brush surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!