A new approach is presented for the application of single-molecule imaging to membrane receptors through the use of vesicles derived from cells expressing fluorescently labeled receptors. During the isolation of vesicles, receptors remain embedded in the membrane of the resultant vesicles, thus allowing these vesicles to serve as nanocontainers for single-molecule measurements. Cell-derived vesicles maintain the structural integrity of transmembrane receptors by keeping them in their physiological membrane. It was demonstrated that receptors isolated in these vesicles can be studied with solution-based fluorescence correlation spectroscopy (FCS) and can be isolated on a solid substrate for single-molecule studies. This technique was applied to determine the stoichiometry of α3β4 nicotinic receptors. The method provides the capability to extend single-molecule studies to previously inaccessible classes of receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201408707DOI Listing

Publication Analysis

Top Keywords

cell-derived vesicles
8
single-molecule imaging
8
imaging membrane
8
single-molecule studies
8
receptors
7
vesicles
6
single-molecule
5
vesicles single-molecule
4
membrane
4
membrane proteins
4

Similar Publications

Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo).

View Article and Find Full Text PDF

Developing new drug delivery systems is crucial for enhancing the efficacy of oncolytic virus (OV) therapies in cancer treatment. In this study, mesenchymal stem cell (MSC)-derived vesicles and oncolytic viruses are exploited to construct a novel formulation. It has been hypothesized that vesicle-coated OVs could amplify cytotoxic effects through superior internalization by tumor cells.

View Article and Find Full Text PDF

Tissue repair is an extremely crucial part of clinical treatment. During the course of disease treatment, surgery, chemotherapy, and radiotherapy cause tissue damage. On the other hand, Normal tissue from accidental or therapeutic exposure to high-dose radiation can cause severe tissue damage.

View Article and Find Full Text PDF

Red cell microparticles produced using high-pressure extrusion enhance both primary and secondary hemostasis.

Pharmacol Rep

January 2025

Department of Neurology, Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, 1600 NW 10th Ave RMSB #7046, Miami, FL, 33136, USA.

Background: Current therapies to treat excessive bleeding are associated with significant complications, which may outweigh their benefits. Red blood cell-derived microparticles (RMPs) are a promising hemostatic agent. Previous studies demonstrated that they reduce bleeding in animal models, correct coagulation defects in patient blood, and have an excellent safety profile.

View Article and Find Full Text PDF

Background: As cell-free nanotherapeutics, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown potential therapeutic action against liver diseases. However, their effects on autoimmune hepatitis (AIH) are not yet well understood.

Methods And Results: In this study, we utilized a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model to investigate the effects of MSC-EVs on AIH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!