The endohedral complexes of diatomic guest molecules H2, N2, O2, F2, HF, CO, LiH, LiF, BN, and BeO with C60 have been characterized computationally by employing second-order Møller-Plesset (MP2) theory and its density-fitting local (DF-LMP2) variant. The interaction energies, equilibrium geometries, dipole moments and harmonic vibrational frequencies of these complexes have been systematically calculated. It was found that all guest molecules are stabilized inside the C60 cage, with the most pronounced stabilization effect (of about 50 kcal mol(-1)) observed for the polar covalent BeO and BN molecules. It is noteworthy that the normally short-lived BN molecule is the only guest molecule that was found to chemisorb on the inner surface of C60. When encapsulated, all guest molecules (except for BN) exhibit bond elongation (up to 0.07 Å) and, consequently, a red shift in vibrational stretching frequencies. In fact, the calculated vibrational properties of the H2@C60 complex agree well with those derived from experiment. The C60 geometry is not perturbed significantly upon encapsulation, but a subtle tendency to decrease the carbon-carbon bond alternation is observed. Polar guest molecules inside C60 are located at an off-center position and a significant decrease in their dipole moments upon encapsulation is observed. The importance of explicitly taking into account electron correlation effects, as well as full geometry relaxation, to yield a correct description of the complexes investigated is clearly demonstrated. The present results may serve as a guide for future attempts to synthesize such complexes employing the "molecular surgery" approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp04069d | DOI Listing |
Inorg Chem
January 2025
College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.
The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guizhou University, State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals, Huaxi, 550025, Guiyang, CHINA.
Clavibacter michiganensis (Cmm), designated as an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO), incites bacterial canker of tomato, which presently eludes rapid and effective control methodologies. Dense biofilms formed by Cmm shield internal bacteria from host immune defenses and obstruct the ingress of agrochemicals. Even when agrochemicals disintegrate biofilms, splashing and bouncing during application disperse active ingredients away from target sites.
View Article and Find Full Text PDFMetal-organic frameworks such as MOF-303 and MOF-LA2-1 have demonstrated exceptional performance for water harvesting applications. To enable a reticular design of such materials, an accurate prediction of the adsorption properties with chemical accuracy and fully accounting for the flexibility is crucial. The computational prediction of water adsorption properties in MOFs has become standard practice, but current methods lack the predictive power needed to design new materials.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh India.
Designing efficient drug delivery systems for optimum therapeutic outcomes and minimum adverse effects remains a pivotal focus in pharmaceutical research. Understanding the nature of interactions between drugs and drug carriers and the drug-release mechanism are the key aspects for the development of effective delivery systems. This work presents a detailed investigation into the intricate interactions between niosomes and the drug Phenosafranin (PSF), and the subsequent release induced by a variety of cyclodextrins (CDs) employing a multifaceted approach.
View Article and Find Full Text PDFWe report a series of dibenzyl isophthalates (DBIs) as novel hosts for room-temperature phosphorescence (RTP) host-guest systems, achieving RTP quantum yields (QY) of up to 77% or lifetimes of up to 21.0 s with the guest coronene- . Furthermore, a 4,4'-Br substituted DBI was used to form host-guest RTP systems with 15 different aromatic guest molecules, to tune the phosphorescence emission color from blue to red and to demonstrate the versatility of the host.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!