Three different surface bound molecular beacons (MBs) were investigated using surface plasmon fluorescence spectroscopy (SPFS) as an optical readout technique. While MB1 and MB2, both consisting of 36 bases, differed only in the length of the linker for surface attachment, the significantly longer MB3, consisting of 56 bases, comprised an entirely different sequence. For sensor chip preparation, the MBs were chemisorbed on gold via thiol anchors together with different thiol spacers. The influence of important parameters, such as the length of the MBs, the length of the linker between the MBs and the gold surface, the length and nature of the thiol spacers, and the ratio between the MBs and the thiol spacers was studied. After hybridization with the target, the fluorophore of the longer MB3 was oriented close to the surface, and the shorter MBs were standing more or less upright, leading to a larger increase in fluorescence intensity. Fluorescence microscopy revealed a homogeneous distribution of the MBs on the surface. The sensor chips could be used for simple and fast detection of target molecules with a limit of detection in the larger picomolar range. The response time was between 5 and 20 min. Furthermore, it was possible to distinguish between fully complementary and singly mismatched targets. While rinsing with buffer solution after hybridization with target did not result in any signal decrease, complete dehybridization could be carried out by intense rinsing with pure water. The MB modified sensor chips could be prepared in a repeatable manner and reused many times without significant decrease in performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la504105x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!