Highly efficient targeted chromosome deletions using CRISPR/Cas9.

Biotechnol Bioeng

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.

Published: May 2015

AI Article Synopsis

  • The CRISPR/Cas9 system is a groundbreaking technology for modifying genomes using the bacterial enzyme Cas9 and a custom guide RNA (gRNA).
  • This method allows for the precise cutting of DNA at specific locations, enabling targeted deletions of DNA segments in human chromosomes.
  • The technique can effectively delete genomic regions from several hundred base pairs up to 1 million base pairs, with a deletion efficiency of 1-10%, making it potentially valuable for creating modified cell and animal models.

Article Abstract

The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.25490DOI Listing

Publication Analysis

Top Keywords

highly efficient
4
efficient targeted
4
targeted chromosome
4
chromosome deletions
4
deletions crispr/cas9
4
crispr/cas9 crispr/cas9
4
crispr/cas9 system
4
system emerged
4
emerged intriguing
4
intriguing technology
4

Similar Publications

Seroprevalence of peste des petits ruminants in sheep and goats managed under pastoral and agro-pastoral systems.

J Infect Dev Ctries

December 2024

SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture (SUA), P.O. Box 3297 Chuo Kikuu, Morogoro, Tanzania.

Introduction: Peste des petits ruminants (PPR) is an infectious disease that imposes substantial economic burdens on small ruminants (SR) production. For Tanzania to develop efficient management and eradication plans, it is essential to comprehend the seroprevalence of PPR designated for global elimination by 2030.

Methodology: This study investigated the prevalence of PPR in animals kept under pastoral and agropastoral communities in Tanzania.

View Article and Find Full Text PDF

Highly salt-resistant and efficient dynamic Janus absorber based on thermo-responsive hydroxypropyl cellulose.

Mater Horiz

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.

Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

The development and generation of affordable and highly efficient energy, particularly hydrogen, are one of the best approaches to address the challenges posed by the depletion of non-renewable energy sources. Hydrogen energy, as a green and ecosystem-friendly source with zero carbon emission, can be generated through various methods, including water splitting (HER/OER) either photo- or electrocatalytic reactions. To implement these reactions effectively in practical applications, it is highly desirable to develop extremely efficient and cost-effective catalytic materials that are comparable to contemporary catalysts.

View Article and Find Full Text PDF

Three new manganese compounds on 5-(pyridin-2-yl)-3-phenyl-1,2,4-triazole (L) basis (HL)[MnBr]·HO (1), (HL)[MnCl] (2) and [MnLCl]·HO (3) have been synthesized and characterized in terms of their structure, photoluminescence (PL), and electroluminescence (EL) properties. Compounds 1 and 2 exhibit bright green luminescence ( ≈ 550 nm) with high quantum yields of 75.1 and 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!